In this paper we obtain quantitative estimates of strong unique continuation for solutions to parabolic equations. We apply these results to prove stability estimates of logarithmic type for an inverse problem consisting in the determination of unknown portions of the boundary of a domain Omega in R(n), from the knowledge of overdetermined boundary data for parabolic boundary value problems.

QUANTITATIVE ESTIMATES OF UNIQUE CONTINUATION FOR PARABOLIC EQUATIONS AND INVERSE-INITIAL BOUNDARY VALUE PROBLEM WITH UNKNOWN BOUNDARIES / B. CANUTO; E. ROSSET; S. VESSELLA. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 354:(2002), pp. 491-535. [10.1090/S0002-9947-01-02860-4]

QUANTITATIVE ESTIMATES OF UNIQUE CONTINUATION FOR PARABOLIC EQUATIONS AND INVERSE-INITIAL BOUNDARY VALUE PROBLEM WITH UNKNOWN BOUNDARIES

VESSELLA, SERGIO
2002

Abstract

In this paper we obtain quantitative estimates of strong unique continuation for solutions to parabolic equations. We apply these results to prove stability estimates of logarithmic type for an inverse problem consisting in the determination of unknown portions of the boundary of a domain Omega in R(n), from the knowledge of overdetermined boundary data for parabolic boundary value problems.
2002
354
491
535
B. CANUTO; E. ROSSET; S. VESSELLA
File in questo prodotto:
File Dimensione Formato  
TRANSACTION_CRV.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 510.67 kB
Formato Adobe PDF
510.67 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/307911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 38
social impact