We consider solutions u = u(x; t), in a neighbourhood of (x; t) = (0; 0), to a parabolic differential equation with variable coefficients depending on space and time variables. We assume that the coefficients in the principal part are Lipschitz continuous and that those in the lower order terms are bounded. We prove that, if u(.; 0) vanishes of infinite order at x = 0, then u(.; 0) = 0.

Remark on the Strong unique continuation property for parabolic operators / G. ALESSANDRINI; S. VESSELLA. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 132:(2004), pp. 499-501. [10.1090/S0002-9939-03-07142-9]

Remark on the Strong unique continuation property for parabolic operators

VESSELLA, SERGIO
2004

Abstract

We consider solutions u = u(x; t), in a neighbourhood of (x; t) = (0; 0), to a parabolic differential equation with variable coefficients depending on space and time variables. We assume that the coefficients in the principal part are Lipschitz continuous and that those in the lower order terms are bounded. We prove that, if u(.; 0) vanishes of infinite order at x = 0, then u(.; 0) = 0.
2004
132
499
501
G. ALESSANDRINI; S. VESSELLA
File in questo prodotto:
File Dimensione Formato  
SUCP_parabolic_Aless_Vpdf.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 107.7 kB
Formato Adobe PDF
107.7 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/308197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact