The sum of the areas of the parallelogram polyominoes having semi-perimeter n+2 is equal to 4^n. In this paper we give a simple proof of this property by means of a mapping from the cells of parallelogram polyominoes having semi-perimeter n+2 to the 4^n words of length n of the free monoid {a,b,c,d}^*. This mapping works in linear time. Then, we introduce a tiling game arising from this enumerative property.
A bijection for the total area of parallelogram polyominoes / R. PINZANI; A. DEL LUNGO;M. NIVAT;S. RINALDI. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - STAMPA. - 144:(2004), pp. 291-302. [10.1016/j.dam.2003.11.007]
A bijection for the total area of parallelogram polyominoes
PINZANI, RENZO;
2004
Abstract
The sum of the areas of the parallelogram polyominoes having semi-perimeter n+2 is equal to 4^n. In this paper we give a simple proof of this property by means of a mapping from the cells of parallelogram polyominoes having semi-perimeter n+2 to the 4^n words of length n of the free monoid {a,b,c,d}^*. This mapping works in linear time. Then, we introduce a tiling game arising from this enumerative property.File | Dimensione | Formato | |
---|---|---|---|
Bijection_for_total_area.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
240.19 kB
Formato
Adobe PDF
|
240.19 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.