The sum of the areas of the parallelogram polyominoes having semi-perimeter n+2 is equal to 4^n. In this paper we give a simple proof of this property by means of a mapping from the cells of parallelogram polyominoes having semi-perimeter n+2 to the 4^n words of length n of the free monoid {a,b,c,d}^*. This mapping works in linear time. Then, we introduce a tiling game arising from this enumerative property.

A bijection for the total area of parallelogram polyominoes / R. PINZANI; A. DEL LUNGO;M. NIVAT;S. RINALDI. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - STAMPA. - 144:(2004), pp. 291-302. [10.1016/j.dam.2003.11.007]

A bijection for the total area of parallelogram polyominoes

PINZANI, RENZO;
2004

Abstract

The sum of the areas of the parallelogram polyominoes having semi-perimeter n+2 is equal to 4^n. In this paper we give a simple proof of this property by means of a mapping from the cells of parallelogram polyominoes having semi-perimeter n+2 to the 4^n words of length n of the free monoid {a,b,c,d}^*. This mapping works in linear time. Then, we introduce a tiling game arising from this enumerative property.
2004
144
291
302
R. PINZANI; A. DEL LUNGO;M. NIVAT;S. RINALDI
File in questo prodotto:
File Dimensione Formato  
Bijection_for_total_area.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 240.19 kB
Formato Adobe PDF
240.19 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/308273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact