The quantum Heisenberg antiferromagnet (HAF) is approached by the pure-quantum self-consistent harmonic approximation that reduces it to an effective classical HAF model. The effective exchange enters the classical-like expression for thermal averages as a temperature scale, so that one can obtain in a simple way the quantum spin correlation length from its classical counterpart. For any spin value S the results compare very well with those from experiments, quantum Monte Carlo simulations, and high-T expansion. The adequacy of our theory supports arguments previously raised against the quantitative validity of the mapping of the quantum HAF onto the quantum nonlinear sigma model.

Temperature and spin dependent correlation length of the quantum Heisenberg antiferromagnet on the square lattice / A. CUCCOLI; V. TOGNETTI; P. VERRUCCHI; R. VAIA. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 77:(1996), pp. 3439-3442. [10.1103/PhysRevLett.77.3439]

Temperature and spin dependent correlation length of the quantum Heisenberg antiferromagnet on the square lattice

CUCCOLI, ALESSANDRO;TOGNETTI, VALERIO;VERRUCCHI, PAOLA;
1996

Abstract

The quantum Heisenberg antiferromagnet (HAF) is approached by the pure-quantum self-consistent harmonic approximation that reduces it to an effective classical HAF model. The effective exchange enters the classical-like expression for thermal averages as a temperature scale, so that one can obtain in a simple way the quantum spin correlation length from its classical counterpart. For any spin value S the results compare very well with those from experiments, quantum Monte Carlo simulations, and high-T expansion. The adequacy of our theory supports arguments previously raised against the quantitative validity of the mapping of the quantum HAF onto the quantum nonlinear sigma model.
1996
77
3439
3442
A. CUCCOLI; V. TOGNETTI; P. VERRUCCHI; R. VAIA
File in questo prodotto:
File Dimensione Formato  
CTVV96.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 140.03 kB
Formato Adobe PDF
140.03 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/308361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 53
social impact