The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme that is involved in the early events of platelet-derived growth factor (PDGF) receptor signal transduction. In fact, LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-induced mitogenesis. In particular, LMW-PTP is involved in pathways that regulate the transcription of the immediately early genes myc and fos in response to growth factor stimulation. Recently, we have found that LMW-PTP exists constitutively in cytosolic and cytoskeleton-associated localization and that, after PDGF stimulation, c-Src is able to bind and phosphorylate LMW-PTP only in the cytoskeleton-associated fraction. As a consequence of its phosphorylation, LMW-PTP increases its catalytic activity about 20-fold. In this study, our interest was to investigate the role of LMW-PTP phosphorylation in cellular response to PDGF stimulation. To address this issue, we have transfected in NIH-3T3 cells a mutant form of LMW-PTP in which the c-Src phosphorylation sites (Tyr131 and Tyr132) were mutated to alanine. We have established that LMW-PTP phosphorylation by c-Src after PDGF treatment strongly influences both cell adhesion and migration. In addition, we have discovered a new LMW-PTP substrate localized in the cytoskeleton that becomes tyrosine-phosphorylated after PDGF treatment: p190Rho-GAP. Hence, LMW-PTP plays multiple roles in PDGF receptor-mediated mitogenesis, since it can bind and dephosphorylate PDGF receptor, and, at the same time, the cytoskeleton-associated LMW-PTP, through the regulation of the p190Rho-GAP phosphorylation state, controls the cytoskeleton rearrangement in response to PDGF stimulation.
The low M(r) protein-tyrosine phosphatase is involved in Rho-mediated cytoskeleton rearrangement after integrin and platelet-derived growth factor stimulation / P. CHIARUGI; P. CIRRI; M. TADDEI; E. GIANNONI; G. CAMICI; G. MANAO; G. RAUGEI; G. RAMPONI. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 275:(2000), pp. 4640-4646.
The low M(r) protein-tyrosine phosphatase is involved in Rho-mediated cytoskeleton rearrangement after integrin and platelet-derived growth factor stimulation.
CHIARUGI, PAOLA;CIRRI, PAOLO;TADDEI, MARIA LETIZIA;GIANNONI, ELISA;CAMICI, GUIDO;MANAO, GIAMPAOLO;RAUGEI, GIOVANNI;RAMPONI, GIAMPIETRO
2000
Abstract
The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme that is involved in the early events of platelet-derived growth factor (PDGF) receptor signal transduction. In fact, LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-induced mitogenesis. In particular, LMW-PTP is involved in pathways that regulate the transcription of the immediately early genes myc and fos in response to growth factor stimulation. Recently, we have found that LMW-PTP exists constitutively in cytosolic and cytoskeleton-associated localization and that, after PDGF stimulation, c-Src is able to bind and phosphorylate LMW-PTP only in the cytoskeleton-associated fraction. As a consequence of its phosphorylation, LMW-PTP increases its catalytic activity about 20-fold. In this study, our interest was to investigate the role of LMW-PTP phosphorylation in cellular response to PDGF stimulation. To address this issue, we have transfected in NIH-3T3 cells a mutant form of LMW-PTP in which the c-Src phosphorylation sites (Tyr131 and Tyr132) were mutated to alanine. We have established that LMW-PTP phosphorylation by c-Src after PDGF treatment strongly influences both cell adhesion and migration. In addition, we have discovered a new LMW-PTP substrate localized in the cytoskeleton that becomes tyrosine-phosphorylated after PDGF treatment: p190Rho-GAP. Hence, LMW-PTP plays multiple roles in PDGF receptor-mediated mitogenesis, since it can bind and dephosphorylate PDGF receptor, and, at the same time, the cytoskeleton-associated LMW-PTP, through the regulation of the p190Rho-GAP phosphorylation state, controls the cytoskeleton rearrangement in response to PDGF stimulation.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.