Electrical resistance changes in different organs of four olive tree (Olea europaea L.) varieties, characterized by different tolerance to chilling and freezing, were examined, during exposure to low temperature. Apparent critical temperatures (CT) and freezing temperatures (Tfr) were identified on the basis of the electrical resistance changes. Both temperatures were lower for the more chilling-tolerant genotypes. From the apparent critical temperatures, the absolute critical temperature (CTabs) and the time delay of the chilling signal transduction process were calculated. In shoots, CTabs varied from 8.8 °C for Ascolana (chilling-tolerant variety) to 13.6 °C for Coratina (chilling-sensitive variety). The magnitude of the transduction time was very similar (about 2 min) for the three genotypes that are more sensitive to chilling, whereas it was significantly higher (about 3 min) for the most tolerant genotype. Different freezing temperatures were observed for different organs. It would appear from this experiment that the order of sensitivity is roots > leaves > shoots > vegetative buds. Accord was found between the absolute critical temperature of electrical resistance and the critical temperature of membrane potential. The occurrence of electrical resistance changes in the tissues of the olive trees exposed to low temperature suggests the use of this experimental procedure as a quick, easy and non-destructive tool to screen plant tissues for chilling tolerance. The strong dependence of the electrical resistance on low temperature, and the critical temperature of around 10 °C, can yield interesting information about the lowest thermal limits for the continuation of normal physiological processes and therefore about the adaptability of plants to particular environments.

Electrical resistance changes during exposure to low temperature and freezing measure chilling tolerance in olive tree (Olea europaea L.) plants / S. MANCUSO. - In: PLANT, CELL AND ENVIRONMENT. - ISSN 0140-7791. - STAMPA. - 23:(2000), pp. 291-299.

Electrical resistance changes during exposure to low temperature and freezing measure chilling tolerance in olive tree (Olea europaea L.) plants.

MANCUSO, STEFANO
2000

Abstract

Electrical resistance changes in different organs of four olive tree (Olea europaea L.) varieties, characterized by different tolerance to chilling and freezing, were examined, during exposure to low temperature. Apparent critical temperatures (CT) and freezing temperatures (Tfr) were identified on the basis of the electrical resistance changes. Both temperatures were lower for the more chilling-tolerant genotypes. From the apparent critical temperatures, the absolute critical temperature (CTabs) and the time delay of the chilling signal transduction process were calculated. In shoots, CTabs varied from 8.8 °C for Ascolana (chilling-tolerant variety) to 13.6 °C for Coratina (chilling-sensitive variety). The magnitude of the transduction time was very similar (about 2 min) for the three genotypes that are more sensitive to chilling, whereas it was significantly higher (about 3 min) for the most tolerant genotype. Different freezing temperatures were observed for different organs. It would appear from this experiment that the order of sensitivity is roots > leaves > shoots > vegetative buds. Accord was found between the absolute critical temperature of electrical resistance and the critical temperature of membrane potential. The occurrence of electrical resistance changes in the tissues of the olive trees exposed to low temperature suggests the use of this experimental procedure as a quick, easy and non-destructive tool to screen plant tissues for chilling tolerance. The strong dependence of the electrical resistance on low temperature, and the critical temperature of around 10 °C, can yield interesting information about the lowest thermal limits for the continuation of normal physiological processes and therefore about the adaptability of plants to particular environments.
2000
23
291
299
S. MANCUSO
File in questo prodotto:
File Dimensione Formato  
plant cell environ1.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 589.44 kB
Formato Adobe PDF
589.44 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/308742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact