Genetic evidence has indicated that Isc proteins play an important role in iron-sulfur cluster biogenesis. In particular, IscU is believed to serve as a scaffold for the assembly of a nascent iron-sulfur cluster that is subsequently delivered to target iron-sulfur apoproteins. We report the characterization of an IscU from Thermatoga maritima, an evolutionarily ancient hyperthermophilic bacterium. The stabilizing influence of a D40A substitution allowed characterization of the holoprotein. Mossbauer (delta = 0.29 +/- 0.03 mm/s, DeltaE(Q) = 0.58 +/- 0.03 mm/s), UV-visible absorption, and circular dichroism studies of the D40A protein show that T. maritima IscU coordinates a [2Fe-2S](2+) cluster. Thermal denaturation experiments demonstrate that T. maritima IscU is a thermally stable protein with a thermally unstable cluster. This is also the first IscU type domain that is demonstrated to possess a high degree of secondary and tertiary structure. CD spectra indicate 36.7% alpha-helix, 13.1% antiparallel beta-sheet, 11.3% parallel beta-sheet, 20.2% beta-turn, and 19.1% other at 20 degreesC, with negligible spectral change observed at 70 degreesC. Cluster coordination also has no effect on the secondary structure of the protein. The dispersion of signals in H-1-N-15 heteronuclear single quantum correlation NMR spectra of wild type and D40A IscU supports the presence of significant tertiary structure for the apoprotein, consistent with a scaffolding role, and is in marked contrast to other low molecular weight Fe-S proteins where cofactor coordination is found to be necessary for proper protein folding. Consistent with the observed sequence homology and proposed conservation of function for IscU-type proteins, we demonstrate T. maritima IscU-mediated reconstitution of human apoferredoxin.

Thermatoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone / I. BERTINI; J.A. COWAN; C. DEL BIANCO; C. LUCHINAT; S.S. MANSY. - In: JOURNAL OF MOLECULAR BIOLOGY. - ISSN 0022-2836. - STAMPA. - 331:(2003), pp. 907-924. [10.1074/jbc.M201439200]

Thermatoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone

BERTINI, IVANO;LUCHINAT, CLAUDIO;
2003

Abstract

Genetic evidence has indicated that Isc proteins play an important role in iron-sulfur cluster biogenesis. In particular, IscU is believed to serve as a scaffold for the assembly of a nascent iron-sulfur cluster that is subsequently delivered to target iron-sulfur apoproteins. We report the characterization of an IscU from Thermatoga maritima, an evolutionarily ancient hyperthermophilic bacterium. The stabilizing influence of a D40A substitution allowed characterization of the holoprotein. Mossbauer (delta = 0.29 +/- 0.03 mm/s, DeltaE(Q) = 0.58 +/- 0.03 mm/s), UV-visible absorption, and circular dichroism studies of the D40A protein show that T. maritima IscU coordinates a [2Fe-2S](2+) cluster. Thermal denaturation experiments demonstrate that T. maritima IscU is a thermally stable protein with a thermally unstable cluster. This is also the first IscU type domain that is demonstrated to possess a high degree of secondary and tertiary structure. CD spectra indicate 36.7% alpha-helix, 13.1% antiparallel beta-sheet, 11.3% parallel beta-sheet, 20.2% beta-turn, and 19.1% other at 20 degreesC, with negligible spectral change observed at 70 degreesC. Cluster coordination also has no effect on the secondary structure of the protein. The dispersion of signals in H-1-N-15 heteronuclear single quantum correlation NMR spectra of wild type and D40A IscU supports the presence of significant tertiary structure for the apoprotein, consistent with a scaffolding role, and is in marked contrast to other low molecular weight Fe-S proteins where cofactor coordination is found to be necessary for proper protein folding. Consistent with the observed sequence homology and proposed conservation of function for IscU-type proteins, we demonstrate T. maritima IscU-mediated reconstitution of human apoferredoxin.
2003
331
907
924
I. BERTINI; J.A. COWAN; C. DEL BIANCO; C. LUCHINAT; S.S. MANSY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/309273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 79
social impact