Abstract- We prove two results about vector bundles on singular algebraic surfaces. First, on proper surfaces there are vector bundles of rank two with arbitrarily large second Chern number and fixed determinant. Second, on separated normal surfaces any coherent sheaf is the quotient of a vector bundle. As a consequence, for such surfaces the Quillen K-theory of vector bundles coincides with the Waldhausen K-theory of perfect complexes. Examples show that, on non-separated schemes, usually many coherent sheaves are not quotients of vector bundles.

Existence of vector bundles and global resolutions for singular surfaces / G. VEZZOSI; S. SCHROER. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - STAMPA. - 140:(2004), pp. 717-728. [10.1112/S0010437X0300071X]

Existence of vector bundles and global resolutions for singular surfaces

VEZZOSI, GABRIELE;
2004

Abstract

Abstract- We prove two results about vector bundles on singular algebraic surfaces. First, on proper surfaces there are vector bundles of rank two with arbitrarily large second Chern number and fixed determinant. Second, on separated normal surfaces any coherent sheaf is the quotient of a vector bundle. As a consequence, for such surfaces the Quillen K-theory of vector bundles coincides with the Waldhausen K-theory of perfect complexes. Examples show that, on non-separated schemes, usually many coherent sheaves are not quotients of vector bundles.
2004
140
717
728
G. VEZZOSI; S. SCHROER
File in questo prodotto:
File Dimensione Formato  
Abstract-Surfaces-Compositio.rtf

accesso aperto

Tipologia: Altro
Licenza: Open Access
Dimensione 1015 B
Formato RTF
1015 B RTF
Existence of vector bundles and global resolutions for singular surfaces.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 236.94 kB
Formato Adobe PDF
236.94 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/309772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact