Abstract—A modeling notation is introduced which extends Time Petri Nets with an additional mechanism of resource assignment making the progress of timed transitions be dependent on the availability of a set of preemptable resources. The resulting notation, which we call Preemptive Time Petri Nets, permits natural description of complex real-time systems running under preemptive scheduling, with periodic, sporadic, and one-shot processes, with nondeterministic execution times, with semaphore synchronizations and precedence relations deriving from internal task sequentialization and from interprocess communication, running on multiple processors. A state space analysis technique is presented which supports the validation of Preemptive Time Petri Net models, combining tight schedulability analysis with exhaustive verification of the correctness of logical sequencing. The analysis technique partitions the state space in equivalence classes in which timing constraints are represented in the form of Difference Bounds Matrixes. This permits it to maintain a polynomial complexity in the representation and derivation of state classes, but it does not tightly encompass the constraints deriving from preemptive behavior, thus producing an enlarged representation of the state space. False behaviors deriving from the approximation can be cleaned-up through an algorithm which provides a necessary and sufficient condition for the feasibility of a behavior along with a tight estimation of its timing profile.

Timed state space analysis of real-time preemptive systems / G. BUCCI; FEDELI A.; SASSOLI L.; VICARIO E.. - In: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. - ISSN 0098-5589. - STAMPA. - 30:(2004), pp. 97-111.

Timed state space analysis of real-time preemptive systems

BUCCI, GIACOMO;VICARIO, ENRICO
2004

Abstract

Abstract—A modeling notation is introduced which extends Time Petri Nets with an additional mechanism of resource assignment making the progress of timed transitions be dependent on the availability of a set of preemptable resources. The resulting notation, which we call Preemptive Time Petri Nets, permits natural description of complex real-time systems running under preemptive scheduling, with periodic, sporadic, and one-shot processes, with nondeterministic execution times, with semaphore synchronizations and precedence relations deriving from internal task sequentialization and from interprocess communication, running on multiple processors. A state space analysis technique is presented which supports the validation of Preemptive Time Petri Net models, combining tight schedulability analysis with exhaustive verification of the correctness of logical sequencing. The analysis technique partitions the state space in equivalence classes in which timing constraints are represented in the form of Difference Bounds Matrixes. This permits it to maintain a polynomial complexity in the representation and derivation of state classes, but it does not tightly encompass the constraints deriving from preemptive behavior, thus producing an enlarged representation of the state space. False behaviors deriving from the approximation can be cleaned-up through an algorithm which provides a necessary and sufficient condition for the feasibility of a behavior along with a tight estimation of its timing profile.
2004
30
97
111
G. BUCCI; FEDELI A.; SASSOLI L.; VICARIO E.
File in questo prodotto:
File Dimensione Formato  
TSE_2004_Abstract.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Open Access
Dimensione 13.14 kB
Formato Adobe PDF
13.14 kB Adobe PDF   Richiedi una copia
TSE_2004SullaRivista.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 740.07 kB
Formato Adobe PDF
740.07 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/309908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact