Abstract BACKGROUND: Proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) play an important role in the blood-brain barrier breakdown present in several neurological diseases including multiple sclerosis and AIDS. However, the specific effects of these cytokines on central nervous system-derived endothelial cells (CNS-EC) is not fully understood. In this study the effects of TNF-alpha and IL-6 were tested on different permeability mechanisms of CNS-EC. METHODS: Central nervous system endothelial cells were isolated from human brain and retina and cultured in vitro in a transwell system. Fluid-phase endocytosis and transcytosis, absorptive-mediated endocytosis, and ammonia diffusion were measured with specific methods. Endothelial cells were studied with electron microscopy for the ultrastructural effects of cytokine stimulation. RESULTS: Fluid-phase endocytosis and transcytosis were significantly increased by TNF-alpha and IL-6. This effect was dose dependent and reversible. The ammonia diffusion rate was also significantly increased by TNF-alpha. Absorptive-mediated endocytosis was not enhanced by TNF-alpha. Ultrastructural analysis of cytokine-treated CNS-EC confirmed the alterations in permeability showing an increase in endocytotic activity and a decrease in tight junctions. CONCLUSIONS: The proinflammatory cytokines IL-6 and TNF-alpha induce specific changes in the morphology and permeability of CNS-EC. These alterations can be important in many diseases characterized by increased cytokine production.
Titolo: | Effects of tumor necrosis factor alpha and interleukin-6 on fluid-phase permeability and ammonia diffusion in CNS-derived endothelial cells. |
Autori di Ateneo: | |
Autori: | DUCHINI A.; GOVINDARAJAN S.; SANTUCCI, MARCO; ZAMPI, GIANCARLO; HOFMAN F. M. |
Anno di registrazione: | 1996 |
Rivista: | |
Volume: | 44 |
Pagina iniziale: | 474 |
Pagina finale: | 482 |
Abstract: | Abstract BACKGROUND: Proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) play an important role in the blood-brain barrier breakdown present in several neurological diseases including multiple sclerosis and AIDS. However, the specific effects of these cytokines on central nervous system-derived endothelial cells (CNS-EC) is not fully understood. In this study the effects of TNF-alpha and IL-6 were tested on different permeability mechanisms of CNS-EC. METHODS: Central nervous system endothelial cells were isolated from human brain and retina and cultured in vitro in a transwell system. Fluid-phase endocytosis and transcytosis, absorptive-mediated endocytosis, and ammonia diffusion were measured with specific methods. Endothelial cells were studied with electron microscopy for the ultrastructural effects of cytokine stimulation. RESULTS: Fluid-phase endocytosis and transcytosis were significantly increased by TNF-alpha and IL-6. This effect was dose dependent and reversible. The ammonia diffusion rate was also significantly increased by TNF-alpha. Absorptive-mediated endocytosis was not enhanced by TNF-alpha. Ultrastructural analysis of cytokine-treated CNS-EC confirmed the alterations in permeability showing an increase in endocytotic activity and a decrease in tight junctions. CONCLUSIONS: The proinflammatory cytokines IL-6 and TNF-alpha induce specific changes in the morphology and permeability of CNS-EC. These alterations can be important in many diseases characterized by increased cytokine production. |
Handle: | http://hdl.handle.net/2158/310478 |
Appare nelle tipologie: | 1a - Articolo su rivista |