Long-term effects of high Cd concentrations on enzyme activities, microbial biomass and respiration and bacterial community structure of soils were assessed in sandy soils where Cd was added between 1988 and 1990 as Cd(NO3)(2) to reach concentrations ranging from 0 to 0.36 mmol Cd kg(-1) dry weight soil. Soils were mantained under maize and grass cultivation, or 'set-aside' regimes, for 1 year. Solubility of Cd and its bioavailability were measured by chemical extractions or by the BIOMET bacterial biosensor system. Cadmium solubility was very low, and Cd bioavailability was barely detectable even in soils polluted with 0.36 mmol Cd kg(-1). Soil microbial biomass carbon (BC) was slightly decreased and respiration was increased significantly even at the lower Cd concentration and as a consequence the metabolic quotient (qCO(2)) was increased, indicating a stressful condition for soil microflora. However, Cd-contaminated soils also had a lower total organic C (TOC) content and thus the microbial biomass C-to-TOC ratio was unaffected by Cd. Alkaline phosphomonoesterase, arylsulphatase and protease activities were significantly reduced in all Cd-contaminated soils whereas acid phosphomonoesterase, beta-glucosidase and urease activites were unaffected by Cd. Neither changes in physiological groups of bacteria, nor of Cd resistant bacteria could be detected in numbers of the culturable bacterial community. Denaturing gradient gel electrophoresis analysis of the bacterial community showed slight changes in maize cropped soils containing 0.18 and 0.36 mmol Cd kg(-1) soil as compared to the control. It was concluded that high Cd concentrations induced mainly physiological adaptations rather than selection for metal-resistant culturable, soil microflora, regardless of Cd concentration, and that some biochemical parameters were more sensitive to stress than others.

Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils / G. RENELLA; M. MENCH; D. VAN DER LEILE; G. PIETRAMELLARA; J. ASCHER; MT. CECCHERINI; L. LANDI; P. NANNIPIERI.. - In: SOIL BIOLOGY & BIOCHEMISTRY. - ISSN 0038-0717. - STAMPA. - 36:(2004), pp. 443-451. [10.1016/j.soilbio.2003.10.022]

Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils.

RENELLA, GIANCARLO;PIETRAMELLARA, GIACOMO;ASCHER, JUDITH;CECCHERINI, MARIA TERESA;LANDI, LORETTA;NANNIPIERI, PAOLO
2004

Abstract

Long-term effects of high Cd concentrations on enzyme activities, microbial biomass and respiration and bacterial community structure of soils were assessed in sandy soils where Cd was added between 1988 and 1990 as Cd(NO3)(2) to reach concentrations ranging from 0 to 0.36 mmol Cd kg(-1) dry weight soil. Soils were mantained under maize and grass cultivation, or 'set-aside' regimes, for 1 year. Solubility of Cd and its bioavailability were measured by chemical extractions or by the BIOMET bacterial biosensor system. Cadmium solubility was very low, and Cd bioavailability was barely detectable even in soils polluted with 0.36 mmol Cd kg(-1). Soil microbial biomass carbon (BC) was slightly decreased and respiration was increased significantly even at the lower Cd concentration and as a consequence the metabolic quotient (qCO(2)) was increased, indicating a stressful condition for soil microflora. However, Cd-contaminated soils also had a lower total organic C (TOC) content and thus the microbial biomass C-to-TOC ratio was unaffected by Cd. Alkaline phosphomonoesterase, arylsulphatase and protease activities were significantly reduced in all Cd-contaminated soils whereas acid phosphomonoesterase, beta-glucosidase and urease activites were unaffected by Cd. Neither changes in physiological groups of bacteria, nor of Cd resistant bacteria could be detected in numbers of the culturable bacterial community. Denaturing gradient gel electrophoresis analysis of the bacterial community showed slight changes in maize cropped soils containing 0.18 and 0.36 mmol Cd kg(-1) soil as compared to the control. It was concluded that high Cd concentrations induced mainly physiological adaptations rather than selection for metal-resistant culturable, soil microflora, regardless of Cd concentration, and that some biochemical parameters were more sensitive to stress than others.
2004
36
443
451
G. RENELLA; M. MENCH; D. VAN DER LEILE; G. PIETRAMELLARA; J. ASCHER; MT. CECCHERINI; L. LANDI; P. NANNIPIERI.
File in questo prodotto:
File Dimensione Formato  
Renella et al., 2004.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 234.06 kB
Formato Adobe PDF
234.06 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/311906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 87
social impact