The classical Avez-Seifert theorem is generalized to the case of the Lorentz force equation for charged test particles with fixed charge-to-mass ratio. Given two events x(0) and x(1), with x(1) in the chronological future of x(0), and a ratio q/m, it is proved that a timelike connecting solution of the Lorentz force equation exists provided there is no null connecting geodesic and the spacetime is globally hyperbolic. As a result, the theorem answers affirmatively to the existence of timelike connecting solutions for the particular case of Minkowski spacetime. Moreover, it is proved that there is at least one C-1 connecting curve that maximizes the functional I[gamma] = integral(gamma)ds + q/(mc(2))omega over the set of C-1 future-directed non-spacelike connecting curves.

On the existence of maximizing curves for the charged-particle action / E. MINGUZZI. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. - STAMPA. - 20:(2003), pp. 4169-4175. [10.1088/0264-9381/20/19/303]

On the existence of maximizing curves for the charged-particle action

MINGUZZI, ETTORE
2003

Abstract

The classical Avez-Seifert theorem is generalized to the case of the Lorentz force equation for charged test particles with fixed charge-to-mass ratio. Given two events x(0) and x(1), with x(1) in the chronological future of x(0), and a ratio q/m, it is proved that a timelike connecting solution of the Lorentz force equation exists provided there is no null connecting geodesic and the spacetime is globally hyperbolic. As a result, the theorem answers affirmatively to the existence of timelike connecting solutions for the particular case of Minkowski spacetime. Moreover, it is proved that there is at least one C-1 connecting curve that maximizes the functional I[gamma] = integral(gamma)ds + q/(mc(2))omega over the set of C-1 future-directed non-spacelike connecting curves.
2003
20
4169
4175
E. MINGUZZI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/312113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact