The control of mRNA stability is becoming recognized as a crucial point of gene expression regulation. A common element responsible for mRNA decay modulation is the adenine- and uracil-rich element that is found in the 3' untranslated region of numerous mRNAs subjected to fast expression changes in response to various stimuli. Previously we identified a post-transcriptional regulation level for the antiapoptotic bcl-2 gene, which could be involved in t(14;18) lymphoma-associated bcl-2 overexpression. Here we demonstrate that bcl-2 mRNA is endowed with an adenine- and uracil-rich element (ARE) characterized by high evolutionary conservation not only among all chordates examined, but even between chordates and the nematode Caenorhabditis elegans (ced-9 gene). As for other well-established destabilizing AREs, the insertion of the bcl-2 ARE downstream from stable beta-globin mRNA causes an enhanced decay of the beta-globin transcript, which proves its functional role. This possibility is corroborated by the fact that the pathway leading to the modulating activity of bcl-2 ARE is influenced by PKC, since the addition of DAG and TPA markedly attenuated the bcl-2 ARE destabilizing potential. Conversely, it is noteworthy that when C-2-ceramide is added to the culture medium as the apoptotic agent, the beta-globin transcript harboring the bcl-2 ARE undergoes a dramatic increase in decay. This observation clearly indicates that the destabilizing function of bcl-2 ARE is enhanced by apoptotic stimuli and suggests that this element could be involved in a post-transcriptional mechanism of bcl-2 down-regulation during apoptosis. The half-life of the mRNA of bcl-2 in Jurkat cells is prolonged by PKC stimulation and shortened by C-2-ceramide addition, strongly supporting the view that bcl-2 mRNA stability plays a physiological role in modulating bcl-2 expression, particularly in its down-regulation during apoptosis. Thus, this element becomes a new candidate for mediating those bcl-2 gene expression changes-from apoptosis-associated down-regulation to tumor-associated overexpression-observed thus far that profoundly influence single cell fate and tissue homeostasis. Schiavone, N., Rosini, P., Quattrone, A., Donnini, M., Lapucci, A., Citti, L., Bevilacqua, A., Nicolin, A., Capaccioli, S. A conserved AU-rich element in the 3' untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosis
A conserved AU-rich element in the 3' untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosis / N.SCHIAVONE; P.ROSINI; A.QUATTRONE; M.DONNINI; A.LAPUCCI; L.CITTI; A.BEVILACQUA; A.NICOLIN; S.CAPACCIOLI. - In: THE FASEB JOURNAL. - ISSN 0892-6638. - STAMPA. - 14:(2000), pp. 174-184.
A conserved AU-rich element in the 3' untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosis.
SCHIAVONE, NICOLA;QUATTRONE, ALESSANDRO;DONNINI, MARTINO;LAPUCCI, ANDREA;CAPACCIOLI, SERGIO
2000
Abstract
The control of mRNA stability is becoming recognized as a crucial point of gene expression regulation. A common element responsible for mRNA decay modulation is the adenine- and uracil-rich element that is found in the 3' untranslated region of numerous mRNAs subjected to fast expression changes in response to various stimuli. Previously we identified a post-transcriptional regulation level for the antiapoptotic bcl-2 gene, which could be involved in t(14;18) lymphoma-associated bcl-2 overexpression. Here we demonstrate that bcl-2 mRNA is endowed with an adenine- and uracil-rich element (ARE) characterized by high evolutionary conservation not only among all chordates examined, but even between chordates and the nematode Caenorhabditis elegans (ced-9 gene). As for other well-established destabilizing AREs, the insertion of the bcl-2 ARE downstream from stable beta-globin mRNA causes an enhanced decay of the beta-globin transcript, which proves its functional role. This possibility is corroborated by the fact that the pathway leading to the modulating activity of bcl-2 ARE is influenced by PKC, since the addition of DAG and TPA markedly attenuated the bcl-2 ARE destabilizing potential. Conversely, it is noteworthy that when C-2-ceramide is added to the culture medium as the apoptotic agent, the beta-globin transcript harboring the bcl-2 ARE undergoes a dramatic increase in decay. This observation clearly indicates that the destabilizing function of bcl-2 ARE is enhanced by apoptotic stimuli and suggests that this element could be involved in a post-transcriptional mechanism of bcl-2 down-regulation during apoptosis. The half-life of the mRNA of bcl-2 in Jurkat cells is prolonged by PKC stimulation and shortened by C-2-ceramide addition, strongly supporting the view that bcl-2 mRNA stability plays a physiological role in modulating bcl-2 expression, particularly in its down-regulation during apoptosis. Thus, this element becomes a new candidate for mediating those bcl-2 gene expression changes-from apoptosis-associated down-regulation to tumor-associated overexpression-observed thus far that profoundly influence single cell fate and tissue homeostasis. Schiavone, N., Rosini, P., Quattrone, A., Donnini, M., Lapucci, A., Citti, L., Bevilacqua, A., Nicolin, A., Capaccioli, S. A conserved AU-rich element in the 3' untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosisFile | Dimensione | Formato | |
---|---|---|---|
FASEBaure.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
412.85 kB
Formato
Adobe PDF
|
412.85 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.