A high propensity to aggregate into intractable deposits is a common problem limiting the production and use of many peptides and proteins in a wide range of biotechnological and pharmaceutical applications. Many therapeutic polypeptides are frequently abandoned at an early stage in their development because of problems with stability and aggregation. It has been shown recently that parameters describing the physicochemical properties of polypeptides can be used as predictors of protein aggregation. Here we demonstrate that these and similar tools can be applied to the rational redesign of bioactive molecules with a significantly reduced aggregation propensity without loss of physiological activity. This strategy has been exemplified by designing variants of the hormone calcitonin that show a significantly reduced aggregation propensity, yet maintain, or even increase, their potency when compared to the current therapeutic forms. The results suggest that this approach could be used successfully to enhance the solubility and efficacy of a wide range of other peptide and protein therapeutics.

Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin / S.B. FOWLER; S. POON; R. MUFF; F. CHITI ; C.M. DOBSON; J. ZURDO;. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - STAMPA. - 102:(2005), pp. 10105-10110. [10.1073/pnas.0501215102]

Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin.

CHITI, FABRIZIO;
2005

Abstract

A high propensity to aggregate into intractable deposits is a common problem limiting the production and use of many peptides and proteins in a wide range of biotechnological and pharmaceutical applications. Many therapeutic polypeptides are frequently abandoned at an early stage in their development because of problems with stability and aggregation. It has been shown recently that parameters describing the physicochemical properties of polypeptides can be used as predictors of protein aggregation. Here we demonstrate that these and similar tools can be applied to the rational redesign of bioactive molecules with a significantly reduced aggregation propensity without loss of physiological activity. This strategy has been exemplified by designing variants of the hormone calcitonin that show a significantly reduced aggregation propensity, yet maintain, or even increase, their potency when compared to the current therapeutic forms. The results suggest that this approach could be used successfully to enhance the solubility and efficacy of a wide range of other peptide and protein therapeutics.
2005
102
10105
10110
S.B. FOWLER; S. POON; R. MUFF; F. CHITI ; C.M. DOBSON; J. ZURDO;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/312936
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 99
social impact