Platelet-derived growth factor (PDGF) is a key mitogen for hepatic stellate cells (HSC) and has been shown to be implicated in liver tissue repair and fibrogenesis. In this study the relationship between PDGF-induced intracellular Ca2+ concentration ([Ca2+]i) increase and mitogenesis in cultured human HSC was evaluated. In high-density cell cultures (80-90% subconfluence), PDGF induced a significant increase in [Ca2+]i, characterized by a short-lasting peak phase, which was followed by a long-lasting plateau phase. The plateau phase was abolished in the absence of extracellular Ca2+. However, in low-density cell cultures (30-40% subconfluence), the plateau phase was absent or markedly less pronounced. In parallel sets of experiments, PDGF was significantly less effective in inducing mitogenesis in low-density cell cultures than in high-density cell cultures and was totally ineffective in the absence of extracellular Ca2+. These results suggest that 1) spatial and time dynamics of PDGF-induced [Ca2+]i increase are dependent on cell density and 2) PDGF-induced mitogenesis requires extracellular Ca2+ influx.
The mitogenic effect of platelet-derived growth factor in human hepatic stellate cells requires calcium influx / FAILLI P; RUOCCO C; DE FRANCO R; CALIGIURI A; GENTILINI A; GENTILINI P; GIOTTI A; M. PINZANI. - In: AMERICAN JOURNAL OF PHYSIOLOGY. CELL PHYSIOLOGY. - ISSN 0363-6143. - ELETTRONICO. - 269:(1995), pp. C1133-C1139.
The mitogenic effect of platelet-derived growth factor in human hepatic stellate cells requires calcium influx
FAILLI, PAOLA;CALIGIURI, ALESSANDRA;GENTILINI, ALESSANDRA;GENTILINI, PAOLO;PINZANI, MASSIMO
1995
Abstract
Platelet-derived growth factor (PDGF) is a key mitogen for hepatic stellate cells (HSC) and has been shown to be implicated in liver tissue repair and fibrogenesis. In this study the relationship between PDGF-induced intracellular Ca2+ concentration ([Ca2+]i) increase and mitogenesis in cultured human HSC was evaluated. In high-density cell cultures (80-90% subconfluence), PDGF induced a significant increase in [Ca2+]i, characterized by a short-lasting peak phase, which was followed by a long-lasting plateau phase. The plateau phase was abolished in the absence of extracellular Ca2+. However, in low-density cell cultures (30-40% subconfluence), the plateau phase was absent or markedly less pronounced. In parallel sets of experiments, PDGF was significantly less effective in inducing mitogenesis in low-density cell cultures than in high-density cell cultures and was totally ineffective in the absence of extracellular Ca2+. These results suggest that 1) spatial and time dynamics of PDGF-induced [Ca2+]i increase are dependent on cell density and 2) PDGF-induced mitogenesis requires extracellular Ca2+ influx.| File | Dimensione | Formato | |
|---|---|---|---|
|
C1133AmJPhysiol1995.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



