ABSTRACT. The correct formulation of numerical models for free-surface hydrodynamics often requires the solution of special linear systems whose coefficient matrix is a piecewise constant function of the solution itself. In so doing one may prevent the development of unrealistic negative water depths. The resulting piecewise linear systems are equivalent to particular linear complementarity problems whose solutions could be obtained by using, for example, interior point methods. These methods may have a favorable convergence property, but they are purely iterative and convergence to the exact solution is proven only in the limit of an infinite number of iterations. In the present paper a simple Newton-type procedure for certain piecewise linear systems is derived and discussed. This procedure is shown to have a finite termination property, i.e., it converges to the exact solution in a finite number of steps, and, actually, it converges very quickly, as confirmed by a few numerical tests.

Iterative solution of piecewise linear systems / L. Brugnano; V. Casulli. - In: SIAM JOURNAL ON SCIENTIFIC COMPUTING. - ISSN 1064-8275. - STAMPA. - 30:(2008), pp. 463-472. [10.1137/070681867]

Iterative solution of piecewise linear systems

BRUGNANO, LUIGI;
2008

Abstract

ABSTRACT. The correct formulation of numerical models for free-surface hydrodynamics often requires the solution of special linear systems whose coefficient matrix is a piecewise constant function of the solution itself. In so doing one may prevent the development of unrealistic negative water depths. The resulting piecewise linear systems are equivalent to particular linear complementarity problems whose solutions could be obtained by using, for example, interior point methods. These methods may have a favorable convergence property, but they are purely iterative and convergence to the exact solution is proven only in the limit of an infinite number of iterations. In the present paper a simple Newton-type procedure for certain piecewise linear systems is derived and discussed. This procedure is shown to have a finite termination property, i.e., it converges to the exact solution in a finite number of steps, and, actually, it converges very quickly, as confirmed by a few numerical tests.
2008
30
463
472
L. Brugnano; V. Casulli
File in questo prodotto:
File Dimensione Formato  
sisc 30 (2008) 463-472.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 167.03 kB
Formato Adobe PDF
167.03 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/313360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 76
social impact