The cross covariogram g_{K,L} of two convex sets K, L in R^n is the function which associates to each x in R^n the volume of the intersection of K with L+x. The two main results of this paper are that g_{K,K} determines three-dimensional convex polytopes K and that g_{K,L} determines both K and L when K and L are convex polyhedral cones satisfying certain assumptions. These results settle a conjecture of G. Matheron in the class of convex polytopes. Further results regard the known counterexamples in dimension n>=4. We also introduce and study the notion of synisothetic polytopes. This concept is related to the rearrangement of the faces of a convex polytope.

The covariogram determines three-dimensional convex polytopes / G. Bianchi. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 220:(2009), pp. 1771-1808. [10.1016/j.aim.2008.11.011]

The covariogram determines three-dimensional convex polytopes

BIANCHI, GABRIELE
2009

Abstract

The cross covariogram g_{K,L} of two convex sets K, L in R^n is the function which associates to each x in R^n the volume of the intersection of K with L+x. The two main results of this paper are that g_{K,K} determines three-dimensional convex polytopes K and that g_{K,L} determines both K and L when K and L are convex polyhedral cones satisfying certain assumptions. These results settle a conjecture of G. Matheron in the class of convex polytopes. Further results regard the known counterexamples in dimension n>=4. We also introduce and study the notion of synisothetic polytopes. This concept is related to the rearrangement of the faces of a convex polytope.
2009
220
1771
1808
G. Bianchi
File in questo prodotto:
File Dimensione Formato  
314700_citazioni_ulteriori_non_riportate_in_MathScinet_o_in_Scopus.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 54.27 kB
Formato Adobe PDF
54.27 kB Adobe PDF   Richiedi una copia
YAIMA3158_covario_poliedri3d_stampa_e_online.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 579.66 kB
Formato Adobe PDF
579.66 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/314700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact