The Quaternary Sierra Chichinautzin volcanic fi eld (SCVF) is located at the volcanic front of the Trans-Mexican Volcanic Belt (TMVB), ~350 km from the Middle American trench where the Cocos plate subducts beneath the North American plate. The SCVF is characterized by more than 200 monogenetic centers, ranging in composition from rare basalts to dacites. Less evolved terms have aphyric to porphyritic textures with phenocrysts of euhedral olivine (± Cr-spinels inclusions) + cpx, whereas evolved terms have porphyritic textures with phenocrysts of pyroxene (cpx>opx), xenocrysts of corroded quartz, and sieve-textured plagioclase from the local basement. Regardless of the degree of magmatic evolution, plagioclase occurs as microphenocrysts or in the groundmass. New geochemical and isotopic data presented in this work are in good agreement with previous analyses; however, a new division for the SCVF mafi c rocks (MgO ≥6.0 wt.%) is proposed. In fact, although concentrations of large ion lithophile elements (LILE) and light to medium rare earth elements (REE) are roughly constant in mafi c rocks, TiO2 and other high fi eld strength elements (HFSE) such as Nb are scattered and vary from 0.8 to 1.8 wt.% and from 5 to 30 ppm, respectively. These characteristics allow grouping the SCVF rocks in two main magmatic series with different TiO2-HFSE enrichment: high(H)-TiO2 and low(L)-TiO2, with subordinate transitional samples. Additionally, a cinder cone with shoshonitic affi nity and extremely high LILE/HFSE ratio is reported for the fi rst time in central Mexico. Compositional variability is also observed among the mineral phases of these mafi c rocks (e.g., the Cr# of spinel hosted in olivine phenocrysts), and the 87Sr/86Sr ratios that progressively increase from the H-TiO2 series (0.70307–0.70425) to the L-TiO2 series (0.70365–0.70434), up to the shoshonitic scoria (0.70456). The calc-alkaline affi nity, LILE, and Pb positive anomalies of the magmas confi rm the occurrence of a subduction-related metasomatised mantle wedge beneath the studied area (particularly for the shoshonitic scoria), but enrichments in TiO2 and other HFSE are controversial. These enrichments are not common in subduction-related magmas because these elements are not easily removed by aqueous fl uids from the subducted slab. However, recent works have demonstrated that HFSE can be relatively soluble in high-temperature fluids/melts arising from the slab, and the presence of TiO2-rich Cr-pargasite in lherzolite xenoliths of the Valle de Bravo area prove the existence of a mantle phase with high-HFSE concentrations. Therefore, partial melting of such hydrated peridotite could explain the genesis of H-TiO2 magmas as suggested by the proposed REE model. Moreover, isotopic ratios and variations in major and trace element concentrations of western SCVF rocks indicate that fractional crystallization plus crustal assimilation are the main evolution processes in the studied area.

Petrology and magmatic evolution of the Western Sierra Chichinautzin Volcanic Field, Central Mexico / L. MERIGGI; J.L. MACÍAS VASQUEZ; S. TOMMASINI; L. CAPRA; S. CONTICELLI. - In: REVISTA MEXICANA DE CIENCIAS GEOLOGICAS. - ISSN 1026-8774. - STAMPA. - 25:(2008), pp. 197-216.

Petrology and magmatic evolution of the Western Sierra Chichinautzin Volcanic Field, Central Mexico

MERIGGI, LORENZO;TOMMASINI, SIMONE;CONTICELLI, SANDRO
2008

Abstract

The Quaternary Sierra Chichinautzin volcanic fi eld (SCVF) is located at the volcanic front of the Trans-Mexican Volcanic Belt (TMVB), ~350 km from the Middle American trench where the Cocos plate subducts beneath the North American plate. The SCVF is characterized by more than 200 monogenetic centers, ranging in composition from rare basalts to dacites. Less evolved terms have aphyric to porphyritic textures with phenocrysts of euhedral olivine (± Cr-spinels inclusions) + cpx, whereas evolved terms have porphyritic textures with phenocrysts of pyroxene (cpx>opx), xenocrysts of corroded quartz, and sieve-textured plagioclase from the local basement. Regardless of the degree of magmatic evolution, plagioclase occurs as microphenocrysts or in the groundmass. New geochemical and isotopic data presented in this work are in good agreement with previous analyses; however, a new division for the SCVF mafi c rocks (MgO ≥6.0 wt.%) is proposed. In fact, although concentrations of large ion lithophile elements (LILE) and light to medium rare earth elements (REE) are roughly constant in mafi c rocks, TiO2 and other high fi eld strength elements (HFSE) such as Nb are scattered and vary from 0.8 to 1.8 wt.% and from 5 to 30 ppm, respectively. These characteristics allow grouping the SCVF rocks in two main magmatic series with different TiO2-HFSE enrichment: high(H)-TiO2 and low(L)-TiO2, with subordinate transitional samples. Additionally, a cinder cone with shoshonitic affi nity and extremely high LILE/HFSE ratio is reported for the fi rst time in central Mexico. Compositional variability is also observed among the mineral phases of these mafi c rocks (e.g., the Cr# of spinel hosted in olivine phenocrysts), and the 87Sr/86Sr ratios that progressively increase from the H-TiO2 series (0.70307–0.70425) to the L-TiO2 series (0.70365–0.70434), up to the shoshonitic scoria (0.70456). The calc-alkaline affi nity, LILE, and Pb positive anomalies of the magmas confi rm the occurrence of a subduction-related metasomatised mantle wedge beneath the studied area (particularly for the shoshonitic scoria), but enrichments in TiO2 and other HFSE are controversial. These enrichments are not common in subduction-related magmas because these elements are not easily removed by aqueous fl uids from the subducted slab. However, recent works have demonstrated that HFSE can be relatively soluble in high-temperature fluids/melts arising from the slab, and the presence of TiO2-rich Cr-pargasite in lherzolite xenoliths of the Valle de Bravo area prove the existence of a mantle phase with high-HFSE concentrations. Therefore, partial melting of such hydrated peridotite could explain the genesis of H-TiO2 magmas as suggested by the proposed REE model. Moreover, isotopic ratios and variations in major and trace element concentrations of western SCVF rocks indicate that fractional crystallization plus crustal assimilation are the main evolution processes in the studied area.
2008
25
197
216
L. MERIGGI; J.L. MACÍAS VASQUEZ; S. TOMMASINI; L. CAPRA; S. CONTICELLI
File in questo prodotto:
File Dimensione Formato  
2008RevMexCieGeol-Meriggi_SierraChichi.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/315970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact