In order to assess the chloride channel gene CLCN2 as a candidate susceptibility gene for childhood absence epilepsy, parametric and non-parametric linkage analysis was performed in 65 nuclear pedigrees. This provided suggestive evidence for linkage with heterogeneity: NPL score=2.3, p<0.009; HLOD=1.5, alpha=0.44. Mutational analysis of the entire genomic sequence of CLCN2 was performed in 24 unrelated patients from pedigrees consistent with linkage, identifying 45 sequence variants including the known non-synonymous polymorphism rs2228292 (G2154C, Glu718Asp) and a novel variant IVS4+12G>A. Intra-familial association analysis using the pedigrees and a further 308 parent-child trios showed suggestive evidence for transmission disequilibrium of the G2154C minor allele: AVE-PDT chi(1)2 = 5.17, p<0.03. Case-control analysis provided evidence for a protective effect of the IVS4+12G>A minor allele: chi(1)2 = 7.27, p<0.008. The 65 nuclear pedigrees were screened for three previously identified mutations shown to segregate with a variety of idiopathic generalised epilepsy phenotypes (597insG, IVS2-14del11 and G2144A) but none were found. We conclude that CLCN2 may be a susceptibility locus in a subset of cases of childhood absence epilepsy

Linkage and mutational analysis of CLCN2 in childhood absence epilepsy / Everett K; Chioza B; Aicardi J; Aschauer H; Brouwer O; Callenbach P; Covanis A; Dooley J; Dulac O; Durner M; Eeg-Olofsson O; Feucht M; Friis M; Guerrini R; Heils A; Kjeldsen M; Nabbout R; Sander T; Wirrell E; McKeigue P; Robinson R; Taske N; Gardiner M.. - In: EPILEPSY RESEARCH. - ISSN 0920-1211. - STAMPA. - 75 (2-3):(2007), pp. 145-153. [10.1016/j.eplepsyres.2007.05.004]

Linkage and mutational analysis of CLCN2 in childhood absence epilepsy.

GUERRINI, RENZO;
2007

Abstract

In order to assess the chloride channel gene CLCN2 as a candidate susceptibility gene for childhood absence epilepsy, parametric and non-parametric linkage analysis was performed in 65 nuclear pedigrees. This provided suggestive evidence for linkage with heterogeneity: NPL score=2.3, p<0.009; HLOD=1.5, alpha=0.44. Mutational analysis of the entire genomic sequence of CLCN2 was performed in 24 unrelated patients from pedigrees consistent with linkage, identifying 45 sequence variants including the known non-synonymous polymorphism rs2228292 (G2154C, Glu718Asp) and a novel variant IVS4+12G>A. Intra-familial association analysis using the pedigrees and a further 308 parent-child trios showed suggestive evidence for transmission disequilibrium of the G2154C minor allele: AVE-PDT chi(1)2 = 5.17, p<0.03. Case-control analysis provided evidence for a protective effect of the IVS4+12G>A minor allele: chi(1)2 = 7.27, p<0.008. The 65 nuclear pedigrees were screened for three previously identified mutations shown to segregate with a variety of idiopathic generalised epilepsy phenotypes (597insG, IVS2-14del11 and G2144A) but none were found. We conclude that CLCN2 may be a susceptibility locus in a subset of cases of childhood absence epilepsy
2007
75 (2-3)
145
153
Everett K; Chioza B; Aicardi J; Aschauer H; Brouwer O; Callenbach P; Covanis A; Dooley J; Dulac O; Durner M; Eeg-Olofsson O; Feucht M; Friis M; Guerrini R; Heils A; Kjeldsen M; Nabbout R; Sander T; Wirrell E; McKeigue P; Robinson R; Taske N; Gardiner M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/317475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact