Rivista di classe A per l'Area 13 (2012) ABSTRACT. We consider a stochastic process driven by diffusions and jumps. Given a discrete record of observations, we devise a technique for identifying the times when jumps larger than a suitably defined threshold occurred. This allows us to determine a consistent non-parametric estimator of the integrated volatility when the infinite activity jump component is Levy. Jump size estimation and central limit results are proved in the case of finite activity jumps. Some simulations illustrate the applicability of the methodology in finite samples and its superiority on the multipower variations especially when it is not possible to use high frequency data.

Non-parametric Threshold estimation for models with stochastic diffusion coefficient and jumps / C.MANCINI. - In: SCANDINAVIAN JOURNAL OF STATISTICS. - ISSN 0303-6898. - STAMPA. - 36:(2009), pp. 270-296.

Non-parametric Threshold estimation for models with stochastic diffusion coefficient and jumps

MANCINI, CECILIA
2009

Abstract

Rivista di classe A per l'Area 13 (2012) ABSTRACT. We consider a stochastic process driven by diffusions and jumps. Given a discrete record of observations, we devise a technique for identifying the times when jumps larger than a suitably defined threshold occurred. This allows us to determine a consistent non-parametric estimator of the integrated volatility when the infinite activity jump component is Levy. Jump size estimation and central limit results are proved in the case of finite activity jumps. Some simulations illustrate the applicability of the methodology in finite samples and its superiority on the multipower variations especially when it is not possible to use high frequency data.
2009
36
270
296
C.MANCINI
File in questo prodotto:
File Dimensione Formato  
p7_sjs_09.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/324028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact