We investigate stability issues concerning the radial symmetry of solutions to Serrin’s overdetermined problems. In particular, we show that, if u is a solution to Δu = n in a smooth domain Ω, u = 0 on ∂Ω and |Du| is “close” to 1 on ∂Ω, then Ω is “close” to the union of a certain number of disjoint unitary balls.

On the stability of the Serrin problem / B. Brandolini; C. Nitsch; P. Salani; C. Trombetti. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 245 n.6:(2008), pp. 1566-1583. [10.1016/j.jde.2008.06.010]

On the stability of the Serrin problem

SALANI, PAOLO;
2008

Abstract

We investigate stability issues concerning the radial symmetry of solutions to Serrin’s overdetermined problems. In particular, we show that, if u is a solution to Δu = n in a smooth domain Ω, u = 0 on ∂Ω and |Du| is “close” to 1 on ∂Ω, then Ω is “close” to the union of a certain number of disjoint unitary balls.
2008
245 n.6
1566
1583
B. Brandolini; C. Nitsch; P. Salani; C. Trombetti
File in questo prodotto:
File Dimensione Formato  
published.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 299.4 kB
Formato Adobe PDF
299.4 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/324802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 44
social impact