In this paper an ill-posed problem for the heat equation is investigated. Solutions u to the equation u_t— u_xx= 0, which are approximately known on the positive half-axis t = 0 and on some vertical lines x = x,,…,x = x„, are considered and stability estimates of these solutions are presented. We assume an a priori bound, governing the heat flow across the boundary x = 0.

A NOTE ON AN ILL-POSED PROBLEM FOR THE HEAT EQUATION / G. TALENTI; S. VESSELLA. - In: JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS. - ISSN 0263-6115. - STAMPA. - 32:(1982), pp. 358-368. [10.1017/S1446788700024915]

A NOTE ON AN ILL-POSED PROBLEM FOR THE HEAT EQUATION

TALENTI, GIORGIO;VESSELLA, SERGIO
1982

Abstract

In this paper an ill-posed problem for the heat equation is investigated. Solutions u to the equation u_t— u_xx= 0, which are approximately known on the positive half-axis t = 0 and on some vertical lines x = x,,…,x = x„, are considered and stability estimates of these solutions are presented. We assume an a priori bound, governing the heat flow across the boundary x = 0.
1982
32
358
368
G. TALENTI; S. VESSELLA
File in questo prodotto:
File Dimensione Formato  
Talenti-Vessella.pdf

Accesso chiuso

Descrizione: file pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 362.75 kB
Formato Adobe PDF
362.75 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/328761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact