We study the interaction of a scalar and a spinning particle with a coherent lin- earized gravitational wave field treated as a classical spin two external field. The spin degrees of freedom of the spinning particle are described by skew-commuting variables. We derive the explicit expressions for the eigenfunctions and the Green’s functions of the theory. The discussion is exact within the approximation of neglecting radiative corrections and we prove that the result is completely determined by the semi-classical contribution: this is shown by comparing the wave functions with the (pseudo)classical solutions of the Hamilton-Jacobi equation.

Scalar and spinning particles in an external linearized gravitational wave field / A. Barducci; R. Giachetti. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - STAMPA. - 38:(2005), pp. 1615-1624. [10.1088/0305-4470/38/7/015]

Scalar and spinning particles in an external linearized gravitational wave field

BARDUCCI, ANDREA;GIACHETTI, RICCARDO
2005

Abstract

We study the interaction of a scalar and a spinning particle with a coherent lin- earized gravitational wave field treated as a classical spin two external field. The spin degrees of freedom of the spinning particle are described by skew-commuting variables. We derive the explicit expressions for the eigenfunctions and the Green’s functions of the theory. The discussion is exact within the approximation of neglecting radiative corrections and we prove that the result is completely determined by the semi-classical contribution: this is shown by comparing the wave functions with the (pseudo)classical solutions of the Hamilton-Jacobi equation.
2005
38
1615
1624
A. Barducci; R. Giachetti
File in questo prodotto:
File Dimensione Formato  
Volkovgravitation.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 132.59 kB
Formato Adobe PDF
132.59 kB Adobe PDF   Richiedi una copia
Abstractvolkovgravitation.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 15.61 kB
Formato Adobe PDF
15.61 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/332000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact