Constitutive mobilization of CD34(+) cells in patients with primary myelofibrosis (PMF) has been attributed to proteolytic disruption of the CXCR4/SDF-1 axis and reduced CXCR4 expression. We document here that the number of circulating CD34(+)/CXCR4(+) cells in PMF patients, as well as the cellular CXCR4 expression, was directly related to CXCR4 mRNA level and that reduced CXCR4 mRNA level was not due to SDF-1-induced downregulation. To address whether epigenetic regulation contributes to defective CXCR4 expression, we studied the methylation status of the CXCR4 promoter using methylation-specific polymerase chain reaction and methylation-specific sequencing in the JAK2V617F-positive HEL cell line and in CD34(+) cells. We found that CD34(+) cells from PMF patients, unlike those from normal subjects, presented hypermethylation of CXCR4 promoter CpG island 1. Following incubation with the demethylating agent 5-Aza-2'-deoxycytidine (5-AzaD), the percentage of PMF CD34(+) cells expressing CXCR4 increased 3-10 times, whereas CXCR4 mRNA level increased approximately 4 times. 5-AzaD-treated PMF CD34(+) cells displayed almost complete reversal of CpG1 island 1 hypermethylation and showed enhanced migration in vitro in response to SDF-1. These data point to abnormal methylation of the CXCR4 promoter as a mechanism contributing to constitutive migration of CD34(+) cells in PMF. Disclosure of potential conflicts of interest is found at the end of this article.
Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis / Costanza Bogani; Vanessa Ponziani; Paola Guglielmelli; Cristophe Desterke; Vittorio Rosti; Alberto Bosi; Marie-Caroline Le Bousse-Kerdilès; Giovanni Barosi; Alessandro M Vannucchi.. - In: STEM CELLS. - ISSN 1066-5099. - STAMPA. - 26:(2008), pp. 1920-1930.
Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis.
BOGANI, COSTANZA;GUGLIELMELLI, PAOLA;BOSI, ALBERTO;VANNUCCHI, ALESSANDRO MARIA
2008
Abstract
Constitutive mobilization of CD34(+) cells in patients with primary myelofibrosis (PMF) has been attributed to proteolytic disruption of the CXCR4/SDF-1 axis and reduced CXCR4 expression. We document here that the number of circulating CD34(+)/CXCR4(+) cells in PMF patients, as well as the cellular CXCR4 expression, was directly related to CXCR4 mRNA level and that reduced CXCR4 mRNA level was not due to SDF-1-induced downregulation. To address whether epigenetic regulation contributes to defective CXCR4 expression, we studied the methylation status of the CXCR4 promoter using methylation-specific polymerase chain reaction and methylation-specific sequencing in the JAK2V617F-positive HEL cell line and in CD34(+) cells. We found that CD34(+) cells from PMF patients, unlike those from normal subjects, presented hypermethylation of CXCR4 promoter CpG island 1. Following incubation with the demethylating agent 5-Aza-2'-deoxycytidine (5-AzaD), the percentage of PMF CD34(+) cells expressing CXCR4 increased 3-10 times, whereas CXCR4 mRNA level increased approximately 4 times. 5-AzaD-treated PMF CD34(+) cells displayed almost complete reversal of CpG1 island 1 hypermethylation and showed enhanced migration in vitro in response to SDF-1. These data point to abnormal methylation of the CXCR4 promoter as a mechanism contributing to constitutive migration of CD34(+) cells in PMF. Disclosure of potential conflicts of interest is found at the end of this article.File | Dimensione | Formato | |
---|---|---|---|
VANNUCCHI_BOGANI_STEM CELL.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.