Let G be a finite group and let Irr(G) denote the set of all complex irreducible characters of G. The Ito–Michler Theorem asserts that if a prime p does not divide the degree of any χ ∈ Irr(G) then a Sylow p-subgroup P of G is normal in G. We prove a real-valued version of this theorem, where instead of Irr(G) we only consider the subset Irr_{rv} (G) consisting of all real-valued irreducible characters of G. We also prove that the character degree graph associated to Irr_{rv} (G) has at most 3 connected components. Similar results for the set of real conjugacy classes of G have also been obtained.

Primes dividing the degrees of the real characters / S. Dolfi; G. Navarro; P. H. Tiep. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 259:(2008), pp. 755-774.

Primes dividing the degrees of the real characters

DOLFI, SILVIO;
2008

Abstract

Let G be a finite group and let Irr(G) denote the set of all complex irreducible characters of G. The Ito–Michler Theorem asserts that if a prime p does not divide the degree of any χ ∈ Irr(G) then a Sylow p-subgroup P of G is normal in G. We prove a real-valued version of this theorem, where instead of Irr(G) we only consider the subset Irr_{rv} (G) consisting of all real-valued irreducible characters of G. We also prove that the character degree graph associated to Irr_{rv} (G) has at most 3 connected components. Similar results for the set of real conjugacy classes of G have also been obtained.
2008
259
755
774
S. Dolfi; G. Navarro; P. H. Tiep
File in questo prodotto:
File Dimensione Formato  
PrimesDividingDegreesRealCharacters.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 352.48 kB
Formato Adobe PDF
352.48 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/334156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 48
social impact