In this paper we investigate the length ‖ χ ‖ of the shortest interpolant of a valid implication φ → ψ in terms of ‖ φ ‖ + ‖ ψ ‖ , both in sentential and in first-order logic. In the case of sentential logic, we give a precise exponential upper bound for ‖ χ ‖ . We also show that the information about the growth of ‖ χ ‖ has some implications for computation theory. In the case of first-order logic we exhibit a very short valid implication whose interpolants are all impossibly long.

Complexity of Craig's interpolation / D.Mundici. - In: ANNALES SOCIETATIS MATHEMATICAE POLONAE. SERIES 4. FUNDAMENTA INFORMATICAE. - ISSN 0324-8429. - STAMPA. - 5:(1982), pp. 261-278.

Complexity of Craig's interpolation

MUNDICI, DANIELE
1982

Abstract

In this paper we investigate the length ‖ χ ‖ of the shortest interpolant of a valid implication φ → ψ in terms of ‖ φ ‖ + ‖ ψ ‖ , both in sentential and in first-order logic. In the case of sentential logic, we give a precise exponential upper bound for ‖ χ ‖ . We also show that the information about the growth of ‖ χ ‖ has some implications for computation theory. In the case of first-order logic we exhibit a very short valid implication whose interpolants are all impossibly long.
1982
5
261
278
D.Mundici
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/334637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact