Abstract. In the space H of quaternions, we investigate the natural, invariant geometry of the open, unit disc Delta_H and of the open half-space H^+. These two domains are diffeomorphic via a Cayley-type transformation. We first study the geometrical structure of the groups of Moebius transformations of Delta_H and H^+ and identify original ways of representing them in terms of two (isomorphic) groups of matrices with quaternionic entries. We then define the cross-ratio of four quaternions, prove that, when real, it is invariant under the action of the Moebius transformations, and use it to define the analogous of the Poincare' distances and differential metrics on Delta_H and H^+.

Moebius transformations and the Poincare' distance in the quaternionic setting / C. BISI; G. GENTILI. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 58 (6):(2009), pp. 2729-2764. [10.1512/iumj.2009.58.3706]

Moebius transformations and the Poincare' distance in the quaternionic setting

GENTILI, GRAZIANO
2009

Abstract

Abstract. In the space H of quaternions, we investigate the natural, invariant geometry of the open, unit disc Delta_H and of the open half-space H^+. These two domains are diffeomorphic via a Cayley-type transformation. We first study the geometrical structure of the groups of Moebius transformations of Delta_H and H^+ and identify original ways of representing them in terms of two (isomorphic) groups of matrices with quaternionic entries. We then define the cross-ratio of four quaternions, prove that, when real, it is invariant under the action of the Moebius transformations, and use it to define the analogous of the Poincare' distances and differential metrics on Delta_H and H^+.
2009
58 (6)
2729
2764
C. BISI; G. GENTILI
File in questo prodotto:
File Dimensione Formato  
IUMJ.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 415.78 kB
Formato Adobe PDF
415.78 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/336827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 46
social impact