In this article, we show how to construct a regular, non-commutative Cauchy kernel for slice regular quaternionic functions. We prove an (algebraic) representation formula for such functions, which leads to a new Cauchy formula. We find the expression of the derivatives of a regular function in terms of the powers of the Cauchy kernel, and we present several other consequent results.

A Cauchy kernel for slice regular functions / Colombo, Fabrizio; Gentili, Graziano; Sabadini, Irene. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - STAMPA. - 37:(2010), pp. 361-378. [10.1007/s10455-009-9191-7]

A Cauchy kernel for slice regular functions

GENTILI, GRAZIANO;
2010

Abstract

In this article, we show how to construct a regular, non-commutative Cauchy kernel for slice regular quaternionic functions. We prove an (algebraic) representation formula for such functions, which leads to a new Cauchy formula. We find the expression of the derivatives of a regular function in terms of the powers of the Cauchy kernel, and we present several other consequent results.
2010
37
361
378
Colombo, Fabrizio; Gentili, Graziano; Sabadini, Irene
File in questo prodotto:
File Dimensione Formato  
AGAG.pdf

Accesso chiuso

Descrizione: AGAG.pdf
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 218.43 kB
Formato Adobe PDF
218.43 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/336831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 49
social impact