We investigate the properties of a coherent array containing about 200 Bose-Einstein condensates produced in a far detuned 1D optical lattice. The density profile of the gas, imaged after releasing the trap, provides information about the coherence of the ground-state wave function. The measured atomic distribution is characterized by interference peaks. The time evolution of the peaks, their relative population, as well as the radial size of the expanding cloud are in good agreement with the predictions of theory. The 2D nature of the trapped condensates and the conditions required to observe the effects of coherence are also discussed.

Expansion of a coherent array of Bose Einstein condensates / P. Pedri; L. Pitaevskii; S. Stringari; C. Fort; S. Burger; F. S. Cataliotti; P. Maddaloni; F. Minardi; M. Inguscio.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 87:(2001), pp. 220401-220405.

Expansion of a coherent array of Bose Einstein condensates

FORT, CHIARA;CATALIOTTI, FRANCESCO SAVERIO;INGUSCIO, MASSIMO
2001

Abstract

We investigate the properties of a coherent array containing about 200 Bose-Einstein condensates produced in a far detuned 1D optical lattice. The density profile of the gas, imaged after releasing the trap, provides information about the coherence of the ground-state wave function. The measured atomic distribution is characterized by interference peaks. The time evolution of the peaks, their relative population, as well as the radial size of the expanding cloud are in good agreement with the predictions of theory. The 2D nature of the trapped condensates and the conditions required to observe the effects of coherence are also discussed.
2001
87
220401
220405
P. Pedri; L. Pitaevskii; S. Stringari; C. Fort; S. Burger; F. S. Cataliotti; P. Maddaloni; F. Minardi; M. Inguscio.
File in questo prodotto:
File Dimensione Formato  
20expansion.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 155.91 kB
Formato Adobe PDF
155.91 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/336994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 185
  • ???jsp.display-item.citation.isi??? 187
social impact