We consider a model for the diffusion of N species of isotopes of the same element in a medium, consisting in a parabolic quasilinear system, with Dirichlet boundary condition, in the general hypothesis that the diffusion coefficients possibly are all different. We prove existence and uniqueness of classical solution in the physically relevant assumption that the total concentration of the element is positive and bounded.
Titolo: | On a quasilinear parabolic system modelling the diffusion of radioactive isotopes |
Autori di Ateneo: | |
Autori: | COMPARINI, ELENA; C. PESCATORE; M. UGHI |
Data di pubblicazione: | 2007 |
Rivista: | |
Volume: | XXXIX |
Pagina iniziale: | 127 |
Pagina finale: | 140 |
Abstract: | We consider a model for the diffusion of N species of isotopes of the same element in a medium, consisting in a parabolic quasilinear system, with Dirichlet boundary condition, in the general hypothesis that the diffusion coefficients possibly are all different. We prove existence and uniqueness of classical solution in the physically relevant assumption that the total concentration of the element is positive and bounded. |
Handle: | http://hdl.handle.net/2158/337024 |
Appare nelle tipologie: | 1a - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
CUparab2007.pdf | Versione finale referata | DRM non definito | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.