The effective treatment of pain is typically limited by a decrease in the pain-relieving action of morphine that follows its chronic administration (tolerance). Restoring opioid efficacy is therefore of great clinical importance. In a murine model of opioid antinociceptive tolerance, repeated administration of morphine significantly stimulated the enzymatic activities of spinal cord serine palmitoyltransferase and ceramide synthase, as well as acid sphingomyelinase (enzymes involved in the de novo and sphingomyelinase pathways of ceramide biosynthesis, respectively) and led to peroxynitrite derived nitroxidative stress and neuroimmune activation (activation of spinal glial cells and increase formation of tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6). Inhibition of ceramide biosynthesis with various pharmacological inhibitors significantly attenuated the increase in spinal ceramide production, nitroxidative stress and neuroimmune activation. These events culminated in a significant inhibition of the development of morphine antinociceptive tolerance at doses devoid of behavioural side effects. Our findings implicate ceramide as a key upstream signaling molecule in the development of morphine antinociceptive tolerance and provide the rationale for development of inhibitors of ceramide biosynthesis as adjuncts to opiates for the management of chronic pain.
Spinal Ceramide Modulates the Development of Morphine Antinociceptive Tolerance via Peroxynitrite Mediated Nitroxidative Stress and Neuroimmune Activation / Michael N Ndengele; Salvatore Cuzzocrea; Emanuela Masini; Maria Cristina Vinci; Emanuela Esposito; Carolina Muscoli; Daniela Nicoleta Petrusca; Vincenzo Mollace; Emanuela Mazzon; Dechun Li; Irina Petrache; George M Matuschak; Daniela Salvemini. - In: THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS. - ISSN 0022-3565. - ELETTRONICO. - --:(2008), pp. -----.
Spinal Ceramide Modulates the Development of Morphine Antinociceptive Tolerance via Peroxynitrite Mediated Nitroxidative Stress and Neuroimmune Activation.
MASINI, EMANUELA;VINCI, MARIA CRISTINA;
2008
Abstract
The effective treatment of pain is typically limited by a decrease in the pain-relieving action of morphine that follows its chronic administration (tolerance). Restoring opioid efficacy is therefore of great clinical importance. In a murine model of opioid antinociceptive tolerance, repeated administration of morphine significantly stimulated the enzymatic activities of spinal cord serine palmitoyltransferase and ceramide synthase, as well as acid sphingomyelinase (enzymes involved in the de novo and sphingomyelinase pathways of ceramide biosynthesis, respectively) and led to peroxynitrite derived nitroxidative stress and neuroimmune activation (activation of spinal glial cells and increase formation of tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6). Inhibition of ceramide biosynthesis with various pharmacological inhibitors significantly attenuated the increase in spinal ceramide production, nitroxidative stress and neuroimmune activation. These events culminated in a significant inhibition of the development of morphine antinociceptive tolerance at doses devoid of behavioural side effects. Our findings implicate ceramide as a key upstream signaling molecule in the development of morphine antinociceptive tolerance and provide the rationale for development of inhibitors of ceramide biosynthesis as adjuncts to opiates for the management of chronic pain.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.