Complex genetic systems may be modelled using causal graphical models. Microarrays may provide information only after normalizing raw data, for example, using graphical models. Probabilistic Causal models are therefore a natural methodological framework to handle both measurement error and causal information. In this talk this methodology is presented by using several illustrative examples.

Statistical Methods in Genetics and Molecular Biology / F. M. Stefanini. - STAMPA. - SIGA 2003 Congress acta:(2005), pp. 10-10. (Intervento presentato al convegno XLIX Convegno Annuale della SSocietà di Genetica Agraria tenutosi a Potenza nel settembre 2005).

Statistical Methods in Genetics and Molecular Biology

STEFANINI, FEDERICO MATTIA
2005

Abstract

Complex genetic systems may be modelled using causal graphical models. Microarrays may provide information only after normalizing raw data, for example, using graphical models. Probabilistic Causal models are therefore a natural methodological framework to handle both measurement error and causal information. In this talk this methodology is presented by using several illustrative examples.
2005
SIGA 2003 Congress Acta
XLIX Convegno Annuale della SSocietà di Genetica Agraria
Potenza
F. M. Stefanini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/343303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact