Given a Borel function $\psi$ defined on a bounded open set $\Omega$ with Lipschitz boundary and $\varphi\in L^1(\partial\Omega,H^{n-1})$, we prove an explicit representation formula for the $L^1$ lower semicontinuous envelope of Mumford-Shah type functionals with the obstacle constraint $u^+\ge\psi$ $H^{n-1}$ a.e. on $\Omega$ and the Dirichlet boundary condition $u=\varphi$ on $\partial\Omega$.
RELAXATION OF FREE DISCONTINUITY ENERGIES WITH OBSTACLES / M. Focardi; M.S. Gelli. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 14:(2008), pp. 879-896. [10.1051/cocv:2008014]
RELAXATION OF FREE DISCONTINUITY ENERGIES WITH OBSTACLES
FOCARDI, MATTEO;
2008
Abstract
Given a Borel function $\psi$ defined on a bounded open set $\Omega$ with Lipschitz boundary and $\varphi\in L^1(\partial\Omega,H^{n-1})$, we prove an explicit representation formula for the $L^1$ lower semicontinuous envelope of Mumford-Shah type functionals with the obstacle constraint $u^+\ge\psi$ $H^{n-1}$ a.e. on $\Omega$ and the Dirichlet boundary condition $u=\varphi$ on $\partial\Omega$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Foc_Gel_COCV_published.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
301.86 kB
Formato
Adobe PDF
|
301.86 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.