Using transportation techniques in the spirit of Cordero-Erausquin, Nazaret and Villani [A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307-332, (2004)], we establish an optimal non parametric trace Sobolev inequality, for arbitrary locally Lipschitz domains in R^n. We deduce a sharp variant of the Brézis-Lieb trace Sobolev inequality [Brézis, H. and Lieb, E. Sobolev inequalities with a remainder term. J. Funct. Anal. 62, 73-86, (1985)], containing both the isoperimetric inequality and the sharp Euclidean Sobolev embedding as particular cases. This inequality is optimal for a ball, and can be improved for any other bounded, Lipschitz, connected domain. We also derive a strengthening of the Brézis-Lieb inequality, suggested and left as an open problem in [op cit].
Balls have the worst best Sobolev inequalities / F. MAGGI; C. VILLANI. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 15:(2005), pp. 83-121. [10.1007/BF02921860]
Balls have the worst best Sobolev inequalities
MAGGI, FRANCESCO;
2005
Abstract
Using transportation techniques in the spirit of Cordero-Erausquin, Nazaret and Villani [A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307-332, (2004)], we establish an optimal non parametric trace Sobolev inequality, for arbitrary locally Lipschitz domains in R^n. We deduce a sharp variant of the Brézis-Lieb trace Sobolev inequality [Brézis, H. and Lieb, E. Sobolev inequalities with a remainder term. J. Funct. Anal. 62, 73-86, (1985)], containing both the isoperimetric inequality and the sharp Euclidean Sobolev embedding as particular cases. This inequality is optimal for a ball, and can be improved for any other bounded, Lipschitz, connected domain. We also derive a strengthening of the Brézis-Lieb inequality, suggested and left as an open problem in [op cit].File | Dimensione | Formato | |
---|---|---|---|
Maggi Villani Balls have the worst best Sobolev inequalities (05).pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.