Using transportation techniques in the spirit of Cordero-Erausquin, Nazaret and Villani [A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307-332, (2004)], we establish an optimal non parametric trace Sobolev inequality, for arbitrary locally Lipschitz domains in R^n. We deduce a sharp variant of the Brézis-Lieb trace Sobolev inequality [Brézis, H. and Lieb, E. Sobolev inequalities with a remainder term. J. Funct. Anal. 62, 73-86, (1985)], containing both the isoperimetric inequality and the sharp Euclidean Sobolev embedding as particular cases. This inequality is optimal for a ball, and can be improved for any other bounded, Lipschitz, connected domain. We also derive a strengthening of the Brézis-Lieb inequality, suggested and left as an open problem in [op cit].

Balls have the worst best Sobolev inequalities / F. MAGGI; C. VILLANI. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 15:(2005), pp. 83-121. [10.1007/BF02921860]

Balls have the worst best Sobolev inequalities

MAGGI, FRANCESCO;
2005

Abstract

Using transportation techniques in the spirit of Cordero-Erausquin, Nazaret and Villani [A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307-332, (2004)], we establish an optimal non parametric trace Sobolev inequality, for arbitrary locally Lipschitz domains in R^n. We deduce a sharp variant of the Brézis-Lieb trace Sobolev inequality [Brézis, H. and Lieb, E. Sobolev inequalities with a remainder term. J. Funct. Anal. 62, 73-86, (1985)], containing both the isoperimetric inequality and the sharp Euclidean Sobolev embedding as particular cases. This inequality is optimal for a ball, and can be improved for any other bounded, Lipschitz, connected domain. We also derive a strengthening of the Brézis-Lieb inequality, suggested and left as an open problem in [op cit].
2005
15
83
121
F. MAGGI; C. VILLANI
File in questo prodotto:
File Dimensione Formato  
Maggi Villani Balls have the worst best Sobolev inequalities (05).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/345047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact