The advantages offered by ultra-fast (>60 kHz) magic angle spinning (MAS) rotation for the study of biological samples, notably containing paramagnetic centers are explored. It is shown that optimal conditions for performing solid-state 13C NMR under 60 kHz MAS are obtained with low-power CW 1H decoupling, as well as after a low-power 1H,13C cross-polarization step at a double-quantum matching condition. Acquisition with low-power decoupling highlights the existence of rotational decoupling sidebands. The sideband intensities and the existence of first and second rotary conditions are explained in the framework of the Floquet-van Vleck theory. As a result, optimal 13C spectra of the oxidized, paramagnetic form of human copper zinc superoxide dismutase (SOD) can be obtained employing rf-fields which do not exceed 40 kHz during the whole experiment. This enables the removal of unwanted heating which can lead to deterioration of the sample. Furthermore, combined with the short 1H T1s, this allows the repetition rate of the experiments to be shortened from 3 s to 500 ms, thus compensating for the sensitivity loss due to the smaller sample volume in a 1.3 mm rotor. The result is that 2D 13C-13C correlation could be acquired in about 24 h on less than 1 mg of SOD sample.

Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS / S. Laage; J. Sachleben; S. Steuernagel; R. Pierattelli; G. Pintacuda; L. Emsley. - In: JOURNAL OF MAGNETIC RESONANCE. - ISSN 1090-7807. - STAMPA. - 196:(2009), pp. 133-141. [10.1016/j.jmr.2008.10.019]

Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS

PIERATTELLI, ROBERTA;
2009

Abstract

The advantages offered by ultra-fast (>60 kHz) magic angle spinning (MAS) rotation for the study of biological samples, notably containing paramagnetic centers are explored. It is shown that optimal conditions for performing solid-state 13C NMR under 60 kHz MAS are obtained with low-power CW 1H decoupling, as well as after a low-power 1H,13C cross-polarization step at a double-quantum matching condition. Acquisition with low-power decoupling highlights the existence of rotational decoupling sidebands. The sideband intensities and the existence of first and second rotary conditions are explained in the framework of the Floquet-van Vleck theory. As a result, optimal 13C spectra of the oxidized, paramagnetic form of human copper zinc superoxide dismutase (SOD) can be obtained employing rf-fields which do not exceed 40 kHz during the whole experiment. This enables the removal of unwanted heating which can lead to deterioration of the sample. Furthermore, combined with the short 1H T1s, this allows the repetition rate of the experiments to be shortened from 3 s to 500 ms, thus compensating for the sensitivity loss due to the smaller sample volume in a 1.3 mm rotor. The result is that 2D 13C-13C correlation could be acquired in about 24 h on less than 1 mg of SOD sample.
2009
196
133
141
S. Laage; J. Sachleben; S. Steuernagel; R. Pierattelli; G. Pintacuda; L. Emsley
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/345101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 103
  • ???jsp.display-item.citation.isi??? 98
social impact