We consider the smallest viscosity solution of the Hessian equation $S_k(D^2u) = f(u)$ in a k-convex domain­, that becomes infinite at the boundary of the domain; here $S_k(D^2u)$ denotes the k-th elementary symmetric function of the eigenvalues of the Hessian matrix of the function $u$, for k ∈ {1, . . . , n}. We prove that if the domain­ is strictly convex and $f$ satisfies suitable assumptions, then the smallest solution is convex. We also establish asymptotic estimates for the behaviour of such a solution near the boundary.

Convexity and asymptotic estimates for large solutions of Hessian equations / A. COLESANTI; E. FRANCINI; P. SALANI. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 13 N. 10-12:(2000), pp. 1459-1472.

Convexity and asymptotic estimates for large solutions of Hessian equations

COLESANTI, ANDREA;FRANCINI, ELISA;SALANI, PAOLO
2000

Abstract

We consider the smallest viscosity solution of the Hessian equation $S_k(D^2u) = f(u)$ in a k-convex domain­, that becomes infinite at the boundary of the domain; here $S_k(D^2u)$ denotes the k-th elementary symmetric function of the eigenvalues of the Hessian matrix of the function $u$, for k ∈ {1, . . . , n}. We prove that if the domain­ is strictly convex and $f$ satisfies suitable assumptions, then the smallest solution is convex. We also establish asymptotic estimates for the behaviour of such a solution near the boundary.
2000
13 N. 10-12
1459
1472
A. COLESANTI; E. FRANCINI; P. SALANI
File in questo prodotto:
File Dimensione Formato  
CoFrSa.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 144.94 kB
Formato Adobe PDF
144.94 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/345710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact