We extend the concept of a binomial coefficient to all integer values of its parameters. Our approach is purely algebraic, but we show that it is equivalent to the evaluation of binomial coefficients by means of the Γ-function. In particular, we prove that the traditional rule of “negation” is wrong and should be substituted by a slightly more complex rule. We also show that the “cross product” rule remains valid for the extended definition.

Negation of binomial coefficients / R. SPRUGNOLI. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - STAMPA. - 308 (22):(2008), pp. 5070-5077. [10.1016/j.disc.2007.09.019]

Negation of binomial coefficients

SPRUGNOLI, RENZO
2008

Abstract

We extend the concept of a binomial coefficient to all integer values of its parameters. Our approach is purely algebraic, but we show that it is equivalent to the evaluation of binomial coefficients by means of the Γ-function. In particular, we prove that the traditional rule of “negation” is wrong and should be substituted by a slightly more complex rule. We also show that the “cross product” rule remains valid for the extended definition.
2008
308 (22)
5070
5077
R. SPRUGNOLI
File in questo prodotto:
File Dimensione Formato  
Renzo07.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 139.16 kB
Formato Adobe PDF
139.16 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/349883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact