An extension of the No Tension Material model to finite deformations is proposed. It is based on the hypothesis that the anelastic evolution occurs without dissipation of mechanical power. A relation for a properly defined velocity of anelastic deformations tensor is so obtained, coupled with an hyper-elastic potential that rules the evolution of the elastic strains. The model is numerically implemented, using a linearisation of the time derivatives, that are referred to an intermediate configuration in the finite step. A simple application to a combined compression-shear deformation process shows that the response of the incremental model is reversible.

Constitutive Model for No Tension Materials in Finite Deformations / M. Cuomo; M. Fagone. - STAMPA. - (2000), pp. 1-32. (Intervento presentato al convegno XIII Convegno Italiano di Meccanica Computazionale tenutosi a Brescia).

Constitutive Model for No Tension Materials in Finite Deformations

FAGONE, MARIO
2000

Abstract

An extension of the No Tension Material model to finite deformations is proposed. It is based on the hypothesis that the anelastic evolution occurs without dissipation of mechanical power. A relation for a properly defined velocity of anelastic deformations tensor is so obtained, coupled with an hyper-elastic potential that rules the evolution of the elastic strains. The model is numerically implemented, using a linearisation of the time derivatives, that are referred to an intermediate configuration in the finite step. A simple application to a combined compression-shear deformation process shows that the response of the incremental model is reversible.
2000
Atti del XIII Convegno Italiano di Meccanica Computazionale
XIII Convegno Italiano di Meccanica Computazionale
Brescia
M. Cuomo; M. Fagone
File in questo prodotto:
File Dimensione Formato  
CuomoFagone2000.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/351840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact