Abstract—Oscillatory behavior is a key property of many biological systems. The small-gain theorem (SGT) for input/output monotone systems provides a sufficient condition for global asymptotic stability of an equilibrium, and hence its violation is a necessary condition for the existence of periodic solutions. One advantage of the use of the monotone SGT technique is its robustness with respect to all perturbations that preserve monotonicity and stability properties of a very low-dimensional (in many interesting examples, just one-dimensional) model reduction. This robustness makes the technique useful in the analysis of molecular biological models in which there is large uncertainty regarding the values of kinetic and other parameters. However, verifying the conditions needed in order to apply the SGT is not always easy. This paper provides an approach to the verification of the needed properties and illustrates the approach through an application to a classical model of circadian oscillations, as a nontrivial “case study,” and provides a theorem in the converse direction of predicting oscillations when the SGT conditions fail.

Oscillations in I/O monotone systems under negative feedback / D. Angeli; E. Sontag. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - STAMPA. - 53:(2008), pp. 166-176.

Oscillations in I/O monotone systems under negative feedback

ANGELI, DAVID;
2008

Abstract

Abstract—Oscillatory behavior is a key property of many biological systems. The small-gain theorem (SGT) for input/output monotone systems provides a sufficient condition for global asymptotic stability of an equilibrium, and hence its violation is a necessary condition for the existence of periodic solutions. One advantage of the use of the monotone SGT technique is its robustness with respect to all perturbations that preserve monotonicity and stability properties of a very low-dimensional (in many interesting examples, just one-dimensional) model reduction. This robustness makes the technique useful in the analysis of molecular biological models in which there is large uncertainty regarding the values of kinetic and other parameters. However, verifying the conditions needed in order to apply the SGT is not always easy. This paper provides an approach to the verification of the needed properties and illustrates the approach through an application to a classical model of circadian oscillations, as a nontrivial “case study,” and provides a theorem in the converse direction of predicting oscillations when the SGT conditions fail.
2008
53
166
176
D. Angeli; E. Sontag
File in questo prodotto:
File Dimensione Formato  
IEEETACangelisontag.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 461.43 kB
Formato Adobe PDF
461.43 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/353921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact