ABSTRACT. When approximating reversible Hamiltonian problems, the presence of a “drift” in the numerical values of the Hamiltonian is sometimes experienced, even when reversible methods of integration are used. In this paper we analyze the phenomenon by using a more precise definition of time reversal symmetry for both the continuous and the discrete problems. A few examples are also presented to support the analysis.
Energy drift in the numerical integration of Hamiltonian problems / L. Brugnano; D. Trigiante. - In: JOURNAL OF NUMERICAL ANALYSIS,INDUSTRIAL AND APPLIED MATHEMATICS. - ISSN 1790-8140. - STAMPA. - 4, 3-4:(2009), pp. 153-170.
Energy drift in the numerical integration of Hamiltonian problems
BRUGNANO, LUIGI;TRIGIANTE, DONATO
2009
Abstract
ABSTRACT. When approximating reversible Hamiltonian problems, the presence of a “drift” in the numerical values of the Hamiltonian is sometimes experienced, even when reversible methods of integration are used. In this paper we analyze the phenomenon by using a more precise definition of time reversal symmetry for both the continuous and the discrete problems. A few examples are also presented to support the analysis.File | Dimensione | Formato | |
---|---|---|---|
jnaiam 4, 3-4 (2009) 153-170.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
587.13 kB
Formato
Adobe PDF
|
587.13 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.