We prove that the combinatorial complexity of the C*-algebras mentioned in the title is polynomial. We use our interpretation of AF C*-algebras as theories in the infinite-valued calculus of Lukasiewicz.

TURING COMPLEXITY OF BEHNCKE-LEPTIN C*-ALGEBRAS WITH A TWO-POINT DUAL / D. MUNDICI. - In: ANNALS OF MATHEMATICS AND OF ARTIFICIAL INTELLIGENCE. - ISSN 1012-2443. - STAMPA. - 6:(1992), pp. 287-294. [10.1007/BF01531034]

TURING COMPLEXITY OF BEHNCKE-LEPTIN C*-ALGEBRAS WITH A TWO-POINT DUAL

MUNDICI, DANIELE
1992

Abstract

We prove that the combinatorial complexity of the C*-algebras mentioned in the title is polynomial. We use our interpretation of AF C*-algebras as theories in the infinite-valued calculus of Lukasiewicz.
1992
6
287
294
D. MUNDICI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/3574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact