In this paper we propose a new method for human action categorization by using an effective combination of a new 3D gradient descriptor with an optic flow descriptor, to represent spatio-temporal interest points. These points are used to represent video sequences using a bag of spatio-temporal visual words, following the successful results achieved in object and scene classification. We extensively test our approach on the standard KTH and Weizmann actions datasets, showing its validity and good performance. Experimental results outperform state-of-the-art methods, without requiring fine parameter tuning.

Recognizing Human Actions by Fusing Spatio-temporal Appearance and Motion Descriptors / Lamberto Ballan;Marco Bertini;Alberto Del Bimbo;Lorenzo Seidenari;Giuseppe Serra. - ELETTRONICO. - (2009), pp. 3569-3572. ((Intervento presentato al convegno IEEE International Conference on Image Processing (ICIP) tenutosi a Cairo, Egypt nel November 7-12 [10.1109/ICIP.2009.5414332].

Recognizing Human Actions by Fusing Spatio-temporal Appearance and Motion Descriptors

Lamberto Ballan;Marco Bertini;Alberto Del Bimbo;Lorenzo Seidenari;Giuseppe Serra
2009

Abstract

In this paper we propose a new method for human action categorization by using an effective combination of a new 3D gradient descriptor with an optic flow descriptor, to represent spatio-temporal interest points. These points are used to represent video sequences using a bag of spatio-temporal visual words, following the successful results achieved in object and scene classification. We extensively test our approach on the standard KTH and Weizmann actions datasets, showing its validity and good performance. Experimental results outperform state-of-the-art methods, without requiring fine parameter tuning.
Proc. of IEEE International Conference on Image Processing (ICIP)
IEEE International Conference on Image Processing (ICIP)
Cairo, Egypt
November 7-12
Lamberto Ballan;Marco Bertini;Alberto Del Bimbo;Lorenzo Seidenari;Giuseppe Serra
File in questo prodotto:
File Dimensione Formato  
05414332.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 592.17 kB
Formato Adobe PDF
592.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/363595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 19
social impact