Abstract: Starting from a mass transportation proof of the Brunn-Minkowski inequality on convex sets, we improve the inequality showing a sharp estimate about the stability property of optimal sets. This is based on a Poincaré-type trace inequality on convex sets that is also proved in sharp form.

A refined Brunn-Minkowski inequality for convex sets / A. Figalli; F. Maggi; A. Pratelli. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 26:(2009), pp. 2511-2519. [10.1016/j.anihpc.2009.07.004]

A refined Brunn-Minkowski inequality for convex sets

MAGGI, FRANCESCO;
2009

Abstract

Abstract: Starting from a mass transportation proof of the Brunn-Minkowski inequality on convex sets, we improve the inequality showing a sharp estimate about the stability property of optimal sets. This is based on a Poincaré-type trace inequality on convex sets that is also proved in sharp form.
2009
26
2511
2519
A. Figalli; F. Maggi; A. Pratelli
File in questo prodotto:
File Dimensione Formato  
Figalli Maggi Pratelli A refined BM (09).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 167.33 kB
Formato Adobe PDF
167.33 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/366805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 68
social impact