In the context of Covariant Quantum Mechanics for a spin particle, we classify the ``quantum vector fields'', i.e.\ the projectable Hermitian vector fields of a complex bundle of complex dimension 2 over spacetime. Indeed, we prove that the Lie algebra of quantum vector fields is naturally isomorphic to a certain Lie algebra of functions of the classical phase space, called ``special phase functions''. This result provides a covariant procedure to achieve the quantum operators generated by the quantum vector fields and the corresponding observables described by the special phase functions.

Hermitian vector fields and covariant quantum mechanics of a spin particle / D.Canarutto. - In: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. - ISSN 0219-8878. - STAMPA. - 7 N.4:(2010), pp. 1-23. [10.1142/S0219887810004464]

Hermitian vector fields and covariant quantum mechanics of a spin particle

CANARUTTO, DANIEL
2010

Abstract

In the context of Covariant Quantum Mechanics for a spin particle, we classify the ``quantum vector fields'', i.e.\ the projectable Hermitian vector fields of a complex bundle of complex dimension 2 over spacetime. Indeed, we prove that the Lie algebra of quantum vector fields is naturally isomorphic to a certain Lie algebra of functions of the classical phase space, called ``special phase functions''. This result provides a covariant procedure to achieve the quantum operators generated by the quantum vector fields and the corresponding observables described by the special phase functions.
2010
7 N.4
1
23
D.Canarutto
File in questo prodotto:
File Dimensione Formato  
S0219887810004464.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 407.47 kB
Formato Adobe PDF
407.47 kB Adobe PDF   Richiedi una copia
HVF_abstractVQR.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 45.87 kB
Formato Adobe PDF
45.87 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/369424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact