The energetic fitness of histidine in each of its three protonation states has been investigated for NMR-determined protein structures by using molecular mechanics calculations. The protein structures have been taken from the Protein Data Bank (PDB). For the proteins in the database, we generated all isomers, considering all combinations of protonation forms of each histidine. The energy of each isomer has been determined by conjugate gradient minimization using a well-established all-atom force field. We find that, in general, the isomer reported in the PDB is not the most stable isomer. The statistical distribution of isomer energies minus that of the PDB isomer behaves as though the sequence of the histidine forms reported in the PDB was chosen at random. We also show that our molecular mechanics method is a valid approach to predicting the protonation state of histidines buried in the protein core.
Energetic fitness of histidine protonation states in PDB structures / Signorini F. Giorgio; Chelli, Riccardo; Procacci, Piero; Schettino, Vincenzo. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - STAMPA. - 108:(2004), pp. 12252-12257. [10.1021/jp047716r]
Energetic fitness of histidine protonation states in PDB structures
CHELLI, RICCARDO;PROCACCI, PIERO;
2004
Abstract
The energetic fitness of histidine in each of its three protonation states has been investigated for NMR-determined protein structures by using molecular mechanics calculations. The protein structures have been taken from the Protein Data Bank (PDB). For the proteins in the database, we generated all isomers, considering all combinations of protonation forms of each histidine. The energy of each isomer has been determined by conjugate gradient minimization using a well-established all-atom force field. We find that, in general, the isomer reported in the PDB is not the most stable isomer. The statistical distribution of isomer energies minus that of the PDB isomer behaves as though the sequence of the histidine forms reported in the PDB was chosen at random. We also show that our molecular mechanics method is a valid approach to predicting the protonation state of histidines buried in the protein core.File | Dimensione | Formato | |
---|---|---|---|
J.Phys.Chem.B-y04_v108_p12252.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
88.26 kB
Formato
Adobe PDF
|
88.26 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.