Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K+ relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K+ (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.

Time functions as utilities / E. Minguzzi. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 298:(2010), pp. 855-868. [10.1007/s00220-010-1048-1]

Time functions as utilities

MINGUZZI, ETTORE
2010

Abstract

Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K+ relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K+ (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.
2010
298
855
868
E. Minguzzi
File in questo prodotto:
File Dimensione Formato  
Minguzzi - Time functions as utilities - Commun. Math. Phys. 298 (2010) 855-868.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 255.86 kB
Formato Adobe PDF
255.86 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/373711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact