Abstract: We show that Alexander's extendibility theorem for a local automorphism of the unit ball is valid also for a local automorphism $ f$ of a pseudoellipsoid $ \mathcal{E}^n_{(p_1, \dots, p_{k})}\overset{\text{def}}{=} \{ z \in \mathbb{C}... ...\vert^2 + \vert z_{n-k+1}\vert^{2 p_1} + \dots + \vert z_n\vert^{2 p_{k}} < 1\}$, provided that $ f$ is defined on a region $ \mathcal{U} \subset \mathcal{E}^n_{(p)}$ such that: i) $ \partial \mathcal{U} \cap \partial \mathcal{E}^n_{(p)}$ contains an open set of strongly pseudoconvex points; ii) $ \mathcal{U}\cap\{ z_i = 0 \} \neq \emptyset$ for any $ n-k +1 \leq i \leq n$. By the counterexamples we exhibit, such hypotheses can be considered as optimal.
On the localization principle for the automorphisms of pseudoellipsoids / M. Landucci; A.Spiro. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 137:(2009), pp. 1339-1345. [10.1090/S0002-9939-08-09726-8]
On the localization principle for the automorphisms of pseudoellipsoids
LANDUCCI, MARIO;
2009
Abstract
Abstract: We show that Alexander's extendibility theorem for a local automorphism of the unit ball is valid also for a local automorphism $ f$ of a pseudoellipsoid $ \mathcal{E}^n_{(p_1, \dots, p_{k})}\overset{\text{def}}{=} \{ z \in \mathbb{C}... ...\vert^2 + \vert z_{n-k+1}\vert^{2 p_1} + \dots + \vert z_n\vert^{2 p_{k}} < 1\}$, provided that $ f$ is defined on a region $ \mathcal{U} \subset \mathcal{E}^n_{(p)}$ such that: i) $ \partial \mathcal{U} \cap \partial \mathcal{E}^n_{(p)}$ contains an open set of strongly pseudoconvex points; ii) $ \mathcal{U}\cap\{ z_i = 0 \} \neq \emptyset$ for any $ n-k +1 \leq i \leq n$. By the counterexamples we exhibit, such hypotheses can be considered as optimal.File | Dimensione | Formato | |
---|---|---|---|
proceedings2009.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
171.76 kB
Formato
Adobe PDF
|
171.76 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.