We deal with the problem of determining a time varying inclusion within a thermal conductor. In particular we study the continuous dependence of the inclusion from the Dirichlet-to- Neumann map. Under a priori regularity assumptions on the unknown defect we establish logarithmic stability estimates.
Stable determination of the discontinuous conductivity coefficient of a parabolic equation / M. Di Cristo; S. Vessella. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 42:(2010), pp. 183-217. [10.1137/090759719]
Stable determination of the discontinuous conductivity coefficient of a parabolic equation
VESSELLA, SERGIO
2010
Abstract
We deal with the problem of determining a time varying inclusion within a thermal conductor. In particular we study the continuous dependence of the inclusion from the Dirichlet-to- Neumann map. Under a priori regularity assumptions on the unknown defect we establish logarithmic stability estimates.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Discontinuous_parabolic.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
375.61 kB
Formato
Adobe PDF
|
375.61 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.