We deal with the problem of determining a time varying inclusion within a thermal conductor. In particular we study the continuous dependence of the inclusion from the Dirichlet-to- Neumann map. Under a priori regularity assumptions on the unknown defect we establish logarithmic stability estimates.

Stable determination of the discontinuous conductivity coefficient of a parabolic equation / M. Di Cristo; S. Vessella. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 42:(2010), pp. 183-217. [10.1137/090759719]

Stable determination of the discontinuous conductivity coefficient of a parabolic equation

VESSELLA, SERGIO
2010

Abstract

We deal with the problem of determining a time varying inclusion within a thermal conductor. In particular we study the continuous dependence of the inclusion from the Dirichlet-to- Neumann map. Under a priori regularity assumptions on the unknown defect we establish logarithmic stability estimates.
2010
42
183
217
M. Di Cristo; S. Vessella
File in questo prodotto:
File Dimensione Formato  
Discontinuous_parabolic.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 375.61 kB
Formato Adobe PDF
375.61 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/383330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact