In order to reconstruct small changes in the interface of an elastic inclusion from modal measurements, we rigorously derive an asymptotic formula which is in some sense dual to the leading-order term in the asymptotic expansion of the perturbations in the eigenvalues due to interface changes of the inclusion. Based on this (dual) formula we propose an algorithm to reconstruct the interface perturbation. We also consider an optimal way of representing the interface change and the reconstruction problem using incomplete data. A discussion on resolution is included. Proposed algorithms are implemented numerically to show their viability.

Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case / H. Ammari; E. Beretta; E. Francini; H. Kang; M. Lim. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 94(2010), pp. 322-339. [10.1016/j.matpur.2010.02.001]

Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case.

FRANCINI, ELISA;
2010

Abstract

In order to reconstruct small changes in the interface of an elastic inclusion from modal measurements, we rigorously derive an asymptotic formula which is in some sense dual to the leading-order term in the asymptotic expansion of the perturbations in the eigenvalues due to interface changes of the inclusion. Based on this (dual) formula we propose an algorithm to reconstruct the interface perturbation. We also consider an optimal way of representing the interface change and the reconstruction problem using incomplete data. A discussion on resolution is included. Proposed algorithms are implemented numerically to show their viability.
94
322
339
H. Ammari; E. Beretta; E. Francini; H. Kang; M. Lim
File in questo prodotto:
File Dimensione Formato  
ammariberettafrancinikanglim2010journaldesmathpa.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 260.52 kB
Formato Adobe PDF
260.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2158/386423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 29
social impact