A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex sets is proved as a corollary.

A mass transportation approach to quantitative isoperimetric inequalities / A. Figalli; F. Maggi; A. Pratelli. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - STAMPA. - 182:(2010), pp. 167-211. [10.1007/s00222-010-0261-z]

A mass transportation approach to quantitative isoperimetric inequalities

MAGGI, FRANCESCO;
2010

Abstract

A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex sets is proved as a corollary.
2010
182
167
211
A. Figalli; F. Maggi; A. Pratelli
File in questo prodotto:
File Dimensione Formato  
Figalli Maggi Pratelli A mass transportation approach to (10).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 930.39 kB
Formato Adobe PDF
930.39 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/389955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 228
  • ???jsp.display-item.citation.isi??? 228
social impact