A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex sets is proved as a corollary.
A mass transportation approach to quantitative isoperimetric inequalities / A. Figalli; F. Maggi; A. Pratelli. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - STAMPA. - 182:(2010), pp. 167-211. [10.1007/s00222-010-0261-z]
A mass transportation approach to quantitative isoperimetric inequalities
MAGGI, FRANCESCO;
2010
Abstract
A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex sets is proved as a corollary.File | Dimensione | Formato | |
---|---|---|---|
Figalli Maggi Pratelli A mass transportation approach to (10).pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
930.39 kB
Formato
Adobe PDF
|
930.39 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.